52. Probabilities on Inheritance in Consanguineous Families. VIII

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.a., March 12, 1954)

VIII. Mother-descendants combinations through several consanguineous marriages (Continuation)
3. General mother-descendants combinations through several consanguineous marriages

In the present section we consider the problems which correspond to those discussed in VI, § 3, but we now suppose that there exist two descendants instead of one. The reduced probability in consideration is then defined by
$\kappa_{l\left|(\mu \nu ; n)_{t}\right| \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{l \mid(\mu \nu ; n)_{t}}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \quad\left(\mu \nu=\mu_{t+1} \nu_{t+1}\right)$.
In case $\mu=\nu=1$, we get the following results:

$$
\begin{aligned}
& \kappa_{l \mid\left(\mu \nu ; 1_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t}+w_{t}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l+1}\left\{2^{-t} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\left(v_{t}+2 w_{t}\right) \mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}, \\
& \kappa_{t \mid\left(\mu \nu ; n_{t} \mid 11\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-t-N_{t}+1} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)
\end{aligned}
$$

In case $\mu=1<\nu$ we get the following results:

$$
\begin{aligned}
& \kappa_{l\left|(\mu \nu ; 1)_{t}\right| 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{1 \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\nu+1}\left(u_{t}+w_{t}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-t} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \\
& \quad+2^{-l-\nu}\left(v_{t}+2 w_{t}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \kappa_{l\left|(\mu \nu ; \nu)_{t}\right| 1 \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{\left.2 \eta_{2}\right)}\right)=\sigma_{1 v}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{t}} \Lambda_{t}\left\{\bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu+1} V\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \quad \text { for } n_{t}>1 .
\end{aligned}
$$

In case $\mu, \nu>1$, we get the following results:

$$
\begin{aligned}
& \kappa_{l \mid(\mu \nu ; 1)_{t}(\mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\lambda+1}\left(u_{t}+w_{t}\right) \bar{A}_{\xi_{1} \eta_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right) \\
& +2^{-l-t+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1} \eta_{1}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right\} \\
& \quad+2^{-l-\lambda}\left(2^{-t+1} \Lambda_{t}+v_{t}+2 w_{t}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
& \kappa_{l(\mu \nu ; n)_{t} \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2 \eta_{2}}\right)=\sigma_{\mu \nu}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{t}+1} \Lambda_{t}\left\{2^{-\mu} \bar{A}_{\xi_{2} \eta_{2}} Q\left(\alpha \beta ; \xi_{1} \eta_{1}\right)+2^{-\nu} \bar{A}_{\xi_{1} \eta_{11}} Q\left(\alpha \beta ; \xi_{2} \eta_{2}\right)\right. \\
& \left.\quad+2^{-\lambda} S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\} \text { for } n_{t}>1 .
\end{aligned}
$$

More generally, we obtain the following results:

$$
\begin{aligned}
& \kappa_{l \mid(\mu \nu ; n)_{t}\left(\mu^{\prime} \nu^{\prime} ; 1\right)_{t^{\prime}}, 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+4\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
& \quad+2^{-l-N_{6}+1} \Lambda_{t}\left\{2^{-t^{\prime}} \Lambda_{t^{\prime}}^{\prime} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+\left(v_{t^{\prime}}^{\prime}+2 w_{t^{\prime}}^{\prime}\right) S\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)\right\}, \\
& \kappa_{l(\mu \nu ; n)_{t}\left(\left\langle\mu^{\prime} \nu^{\prime} ;\right)_{t^{\prime}} \mid 1 \nu^{\prime}\right.}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{\left.2 \eta_{2}\right)}\right. \\
& \quad=\sigma_{1 \nu^{\prime}}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-\nu^{\prime}+1}\left(u_{t^{\prime}}^{\prime}+w_{t^{\prime}}^{\prime}\right) \bar{A}_{\xi_{1} \eta_{1}} Q\left(\xi_{1} \eta_{1} ; \xi_{2} \eta_{2}\right)
\end{aligned}
$$

