51. Probabilities on Inheritance in Consanguineous Families. VII

By Yûsaku Komatu and Han Nishimiya
Department of Mathematics, Tokyo Institute of Technology
(Comm. by T. Furuhata, m.J.a., March 12, 1954)

VII. Mother-descendants combinations through several consanguineous marriages

1. Special combinations with several consanguineous marriages

The main purpose of the present chapter is to determine the probability of a mother-descendants combination designated by
$\pi_{(\mu \nu ; n)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \equiv \bar{A}_{\alpha \beta} \kappa_{(\mu \nu ; n)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \quad\left(\mu=\mu_{t+1}, \nu=\nu_{t+1}\right)$.
By definition, the reduced probability $\kappa_{(\mu \nu ; \nu)_{t} \mid \mu \nu}$ is given by $\kappa_{(\mu \nu ; \nu)_{t} \mid \mu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sum \kappa_{\left(\mu \nu ; \sim \nu_{t}\right.}(\alpha \beta ; a b) \kappa_{\mu \nu}\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)$.
Evidently, this probability is symmetric with respect to μ_{r} and ν_{r} for any r with $1 \leqq r \leqq t$, while it is quasi-symmetric with respect to μ and ν, i.e.

$$
\kappa_{(\mu \nu ; n)_{t} \mid \mu \nu \nu}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\kappa_{(\mu \nu ; n)_{t} \mid \nu \mu}\left(\alpha \beta ; \xi_{2} \eta_{2}, \xi_{1} \eta_{1}\right) .
$$

In the present section we first deal with the case where the n_{r}, μ and ν are all equal to unity. After substituting the known expressions, its defining equation yields

$$
\begin{aligned}
& \kappa_{(\mu \nu ; 1)_{t} \mid 11}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)=\sigma\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2^{-t+1} \Lambda_{t} U\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
&+4 u_{t} \sum R(a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right)+2 v_{t} \sum S(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) \\
&+4 w_{t} \sum T(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) .
\end{aligned}
$$

Thus, it remains only to determine the last three residual terms, i.e.

$$
\begin{aligned}
\mathfrak{X}\left(\xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & \sum R(a b) \kappa\left(\alpha b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
\mathfrak{Y}\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\sum S(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right), \\
3\left(\alpha \beta ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right) & =\sum T(\alpha \beta ; a b) \kappa\left(a b ; \xi_{1} \eta_{1}, \xi_{2} \eta_{2}\right),
\end{aligned}
$$

which are evidently symmetric with respect to $\xi_{1} \eta_{1}$ and $\xi_{2} \eta_{2}$. Actual computation leads to the following results:

$$
\begin{array}{cl}
\mathfrak{X}(i i, i i)=\frac{1}{8} i^{2}(1-i)(1+i), & \mathfrak{X}(i i, i k)=-\frac{1}{4} i^{3} k, \\
\mathfrak{X}(i i, k k)=-\frac{1}{8} i^{2} k^{2}, & \mathfrak{H}(i i, h k)=-\frac{1}{4} i^{2} h k, \\
\mathfrak{X}(i j, i j)=\frac{1}{4} i j(1-2 i j), & \mathfrak{X}(i j, i k)=-\frac{1}{2} i^{2} j k, \\
\mathfrak{X}(i j, h k)=-\frac{1}{2} i j h k ; & \\
\mathfrak{Y}(i i ; i i, i i)=-\frac{1}{16} i(1-i)^{2}(1-2 i), & \mathfrak{Y}(i i ; i i, i g)=\frac{1}{8} i g(1-i)(1-2 i), \\
\mathfrak{Y}(i i ; i i, g g)=-\frac{1}{1} 16 g^{2}(1-2 i), & \mathfrak{Y}(i i ; i i, f g)=-\frac{1}{8} i f g(1-2 i), \\
\mathfrak{Y}(i i ; i k, i k)=-\frac{1}{16} k\left(1-4 i-k+3 i^{2}-8 i^{2} k\right), \\
& \\
& \mathfrak{Y}(i i ; i k, k k)=\frac{1}{16} k^{2}(1+i-5 k+4 i k), \\
\mathfrak{Y}(i i ; i k, i g)=\frac{1}{16} k g\left(1-7 i+8 i^{2}\right), & \mathfrak{Y}(i i ; i k, k g)=\frac{1}{16} k g(1-3 i-2 k+8 i k), \\
\mathfrak{Y}(i i ; i k, g g)=-\frac{1}{16} k g^{2}(1-4 i), & \mathfrak{Y}(i i ; i k, f g)=-\frac{1}{8} k f g(1-4 i),
\end{array}
$$

