No. 3]

34. Note on Dirichlet Series. XII. On the Analogy between Singularities and Order-Directions. I

By Chuji Tanaka

Mathematical Institute, Waseda University, Tokyo (Comm. by Z. Suetuna, M.J.A., March 12, 1954)

(1) Introduction. Let us put

(1.1)
$$F(s) = \sum_{n=1}^{\infty} a_n \exp(-\lambda_n s)$$
 $(s = \sigma + it, 0 \le \lambda_1 < \lambda_2 < \cdots < \lambda_n \to +\infty)$.
C. Biggeri has proved the next theorem.

C. Biggeri's Theorem (1) pp. 979-980, 2) p. 294). Let (1.1) be simply convergent for $\sigma > 0$. If $\Re(a_n) \ge 0$ (n=1, 2, ...) and $\lim_{n \to \infty} (\cos(\arg(a_n)))^{1/\lambda_n} = 1$, then s = 0 is the singular point.

In this note, we shall establish an analogous theorem concerning order-direction. We begin with

Definition. Let (1.1) be uniformly convergent in the whole plane. Then, we call the direction $\Im(s)=t$ the order-direction of (1.1), provided that, in $|\Im(s)-t| \leq \varepsilon$ (ε : any positive constant), (1.1) has the same order as in the whole plane, i.e.

Remark. The order-direction is a special case of the order-curve defined in the previous note (3).

Our theorem is the following

Theorem. Let (1.1) be uniformly convergent in the whole plane. If we have

$$(1.2) \quad \begin{array}{ll} \text{(i)} & \Re(a_n) \geq 0 & (n=1, 2, \ldots), \\ & \text{(ii)} & \lim_{n \to \infty} 1/\lambda_n \log \lambda_n \cdot \log(\cos \theta_n) = 0, & \arg(a_n) = \theta_n, \end{array}$$

then $\Im(s)=0$ is the order-direction of (1.1).

As its corollary, we get

Corollary. Let (1.1) with $\Re(a_n) \geq 0$ (n=1, 2, ...),

 $\lim_{n\to\infty} (\cos\theta_n)^{1/\lambda_n} = 1, \ (\theta_n = \arg(a_n)) \ be \ simply \ (necessarily \ absolutely) \ convergent \ in \ the \ whole \ plane. Then \ \Im(s) = 0 \ is \ the \ order-direction \ of \ (1.1). In \ particular, \ if \ |\theta_n| \leq \theta < \pi/2 \ (n=1,2,\ldots), \ the \ same \ conclusion \ holds.$

(2) Lemmas. To prove this theorem, we need some lemmas. Lemma I (C. Tanaka, 4) p. 77, corollary IV). Under the same assumptions as in our Theorem, the order ρ of (1.1) is given by