93. Note on Linear Topological Spaces

By Tsuyoshi Andô
(Comm. by K. Kunugi, m.J.A., June 12, 1954)

§1. The purpose of this note is to give a generalization of Y. Kawada's theorem to convex linear topological spaces and some related remarks. As we treat only separative convex linear topological spaces, we shall call them merely convex spaces.

In the sequel, the word "Isomorphism" means always algebraic isomorphism together with homeomorphism, unless the contrary is mentioned. For two convex spaces E and $F, L(E, F)$ is the space of all continuous linear mappings of E to F. For any subset A of E and B of $F,(A \mid B)$ denotes the set ; $\{u ; u \in L(E, F) u(A) \subseteq B\}$. For a family \mathfrak{S} of bounded subsets of E such that for any $A_{1} \in \mathbb{S}$ and $A_{2} \in \Subset$, there exists an $A_{3} \in \mathbb{S}$ with $A_{1} \smile A_{2} \subseteq A_{3}$ and $\bigcap_{A \in \mathbb{C}} A=E$, we can define a convex linear topology in $L(E, F)$ whose basis of neighborhood of the origin consists of all $(A \mid V)$ where $A \in \subseteq$ and V is a neighborhood of o in F. This topology is called ऽ-topology. We write $\left\langle x, x^{\prime}\right\rangle$ instead of $x^{\prime}(x)\left(x \in E, x^{\prime} \in E^{\prime}\right)$ where E^{\prime} denotes the conjugate space of E. A neighborhood of the origin is called an o-neighborhood.
§2. Theorem 1. (Kawada ${ }^{1)}$) Let E and F be two convex spaces. If $L(E, E)$ and $L(F, F)$ are algebraically (ring) isomorphic, then there exists an algebraic isomorphic mapping φ of E onto F and $\tilde{\varphi}$ of $E^{\prime \prime}$ onto F^{\prime} such that $\left\langle x, x^{\prime}\right\rangle=\left\langle\varphi(x), \widetilde{\varphi}\left(x^{\prime}\right)\right\rangle \quad\left(x \in E, x^{\prime} \in E^{\prime}\right)$.

Proof. We sketch Kawada's proof.
(a) Any minimal left ideal \mathfrak{H} of $L(E, E)$ is algebraically isomorphic to E in the manner $E \ni x \leftrightarrow u_{x} \in \mathfrak{M}$ implies $v(x) \leftrightarrow v \cdot u_{x}(v \in L(E, E))$.

In fact, there exists an element x_{0} of E and $u_{0} \in \mathfrak{H}$ with $u_{0}\left(x_{0}\right) \neq 0$. We can easily see that the linear mapping $u \rightarrow u\left(x_{0}\right)$ maps \mathfrak{A} onto E. The set $\left\{u ; u \in \mathfrak{H} u\left(x_{0}\right)=0\right\}$ is a left ideal contained in \mathfrak{H} and not identical to it, so a zero ideal, because of the minimalness of \mathfrak{A}. Thus this mapping is an expected algebraic isomorphism. Conversely, the set $\left\{u_{y} ; u_{y}(x)=\left\langle x, x_{0}{ }^{\prime}\right\rangle y, y \in E\right\}$ for non-zero $x_{0}{ }^{\prime} \in E^{\prime}$ is a minimal left ideal.
(b) Let Φ be the given algebraic isomorphic mapping of $L(E, E)$ onto $L(F, F)$. Then

$$
E \ni x \longleftrightarrow u_{x} \in \mathfrak{M} \longleftrightarrow \tilde{u}_{\tilde{x}} \in \tilde{\mathfrak{H}} \longleftrightarrow \tilde{x} \in F
$$

and

$$
v(x) \leftrightarrow v \cdot u_{x} \longleftrightarrow \Phi(v) \tilde{u}_{\tilde{x}} \longleftrightarrow \Phi(v)[\tilde{x}]
$$

1) Y. Kawada: "Ueber den Operatorenring Banachscher Räume", Proc. Imp. Acad., 19, 616-621 (1943).
