93. Note on Linear Topological Spaces

By Tsuyoshi Andô

(Comm. by K. KUNUGI, M.J.A., June 12, 1954)

§1. The purpose of this note is to give a generalization of Y. Kawada's theorem to convex linear topological spaces and some related remarks. As we treat only separative convex linear topological spaces, we shall call them merely *convex spaces*.

In the sequel, the word "Isomorphism" means always algebraic isomorphism together with homeomorphism, unless the contrary is mentioned. For two convex spaces E and F, L(E, F) is the space of all continuous linear mappings of E to F. For any subset A of E and B of F, (A | B) denotes the set; $\{u; u \in L(E, F) \ u(A) \subseteq B\}$. For a family \mathfrak{S} of bounded subsets of E such that for any $A_1 \in \mathfrak{S}$ and $A_2 \in \mathfrak{S}$, there exists an $A_3 \in \mathfrak{S}$ with $A_1 \smile A_2 \subseteq A_3$ and $\bigcap_{A \in \mathfrak{S}} A = E$, we can define a convex linear topology in L(E, F) whose basis of neighborhood of the origin consists of all (A | V) where $A \in \mathfrak{S}$ and Vis a neighborhood of o in F. This topology is called \mathfrak{S} -topology. We write $\langle x, x' \rangle$ instead of x'(x) $(x \in E, x' \in E')$ where E' denotes the conjugate space of E. A neighborhood of the origin is called an o-neighborhood.

§2. Theorem 1. (Kawada¹) Let E and F be two convex spaces. If L(E, E) and L(F, F) are algebraically (ring) isomorphic, then there exists an algebraic isomorphic mapping φ of E onto F and $\tilde{\varphi}$ of E' onto F' such that $\langle x, x' \rangle = \langle \varphi(x), \tilde{\varphi}(x') \rangle$ $(x \in E, x' \in E')$.

Proof. We sketch Kawada's proof.

(a) Any minimal left ideal \mathfrak{A} of L(E, E) is algebraically isomorphic to E in the manner $E \ni x \longleftrightarrow u_x \in \mathfrak{A}$ implies $v(x) \longleftrightarrow v \cdot u_x$ ($v \in L(E, E)$).

In fact, there exists an element x_0 of E and $u_0 \in \mathfrak{A}$ with $u_0(x_0) \neq 0$. We can easily see that the linear mapping $u \to u(x_0)$ maps \mathfrak{A} onto E. The set $\{u; u \in \mathfrak{A} \ u(x_0)=0\}$ is a left ideal contained in \mathfrak{A} and not identical to it, so a zero ideal, because of the minimalness of \mathfrak{A} . Thus this mapping is an expected algebraic isomorphism. Conversely, the set $\{u_y; u_y(x)=\langle x, x_0' \rangle y, y \in E\}$ for non-zero $x_0' \in E'$ is a minimal left ideal.

(b) Let Φ be the given algebraic isomorphic mapping of L(E, E) onto L(F, F). Then

$$E \ni x \longleftrightarrow u_x \in \mathfrak{A} \longleftrightarrow \tilde{u}_{\widetilde{x}} \in \widetilde{\mathfrak{A}} \longleftrightarrow \tilde{x} \in F$$
$$v(x) \longleftrightarrow v \cdot u_x \longleftrightarrow \mathscr{O}(v) \tilde{u}_{\widetilde{x}} \longleftrightarrow \mathscr{O}(v) [\widetilde{x}]$$

and

¹⁾ Y. Kawada: "Ueber den Operatorenring Banachscher Räume", Proc. Imp. Acad., **19**, 616-621 (1943).