92. A Proof for a Theorem of M. Nakaoka

By Katuhiko MIZUNO

Osaka City University, Osaka (Comm. by K. KUNUGI, M.J.A., June 12, 1954)

1. Let X be a simply connected topological space with vanishing homotopy groups $\pi_i(X)$ for i < n, n < i < q and q < i. Then M. Nakaoka¹⁾ proved that the transgression τ in the Cartan-Serre fiber space associated with X and the geometrical realization \overline{k}_n^{q+1} of the Eilenberg-MacLane invariant k_n^{q+1} are related as follows:

(1)
$$\tau \boldsymbol{b} = - \overline{\boldsymbol{k}}_n^{q+1}$$

where b is the basic cohomology class of the fiber.

The purpose of this note is to construct a singular structure of an arbitrary fiber space (E, p, B) satisfying

- (2) (i) the total space E is a simply connected space with vanishing homotopy groups $\pi_i(E)$ for i > q with a base point e_0 ,
 - (ii) the base space B is a space with vanishing homotopy groups $\pi_i(B)$ for $i \ge q$ with a base point $b_0 = p(e_0)$,
 - (iii) the projection $p: E \longrightarrow B$ induces the isomorphisms $\pi_i(E) \approx \pi_i(B)$ for i < q,
 - (iv) the fiber $F=p^{-1}(b_0)$ is a space with a base point e_0 .

And, as an application, we shall give a proof of the similar relation as (1) in an arbitrary fiber space satisfying (2) about the Postnikov invariant.²⁾

This paper makes full use of the results and terminologies of the preceding paper by the author.³⁾

2. Let Y be a topological space. A singular *n*-simplex T of Y is a function $T(x_0, \ldots, x_n) \in Y$ defined for $0 \le x_i, x_0 + x_1 + \cdots + x_n = 1$. For any element $\beta = \sum_j m_j \beta_j$ of $K_r(n)$, the β -face T_{β} of T is an r-chain defined as

$$T_{\beta} = \sum_{j} m_{j} T_{\beta_{j}}, \quad T_{\beta_{j}}(x_{0}, \ldots, x_{r}) = T(y_{0}, \ldots, y_{n}),$$

where $y_i=0$ if $i \neq \beta_j(k)$ for all $k=0, \ldots, r$, and $y_i=\sum_k x_k$ for $\beta_j(k)=i$. In particular, the ε^i -face of T will be denoted simply by $T^{(i)}$ and is called the *i*-th face.

¹⁾ M. Nakaoka: Transgression and the invariant k_n^{q+1} , Proc. Japan Acad., **30**, 363-368 (1954).

²⁾ Refer 3). Originally reported in the Math. Reviews, 13 (1952).

⁽M. M. Postnikov: Doklady Akad. Nauk URSS., **76**, 359–362 (1951); ibid., **76**, 789–791 (1951)).

³⁾ K. Mizuno: On the minimal complexes, Jour. Inst. Polytech., Osaka City Univ., 5, 41-51 (1954).