89. Note on an Ergodic Theorem

By Shigeru TSURUMI

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., June 12, 1954)

1. Let (X, \mathfrak{B}, m) be a measure space such that X is a set, \mathfrak{B} is a Borel field of subsets of X, and m is a σ -finite measure defined on \mathfrak{B} . A single valued (not necessarily one to one) transformation T of X onto itself is called *measurable* if both T and its inverse transformation T^{-1} transform every set of \mathfrak{B} to a set of \mathfrak{B} . The measurable transformation T is called *non-singular* (with respect to m) if $E \in \mathfrak{B}$ and m(E)=0 imply $m(TE)=m(T^{-1}E)=0$, and is called *incompressible* (with respect to m) if $E \in \mathfrak{B}$ and $T^{-1}E \supset E$ imply $m(T^{-1}E-E)=0$. Two measures λ and μ defined on \mathfrak{B} are called equivalent if $E \in \mathfrak{B}$ and $\lambda(E)=0$ imply $\mu(E)=0$ and conversely. A measure μ on \mathfrak{B} is said to be *invariant* under the measurable transformation T (or the measurable transformation T is said to be *measure-preserving* with respect to μ) if $\mu(T^{-1}E)=\mu(E)$ for any set E of \mathfrak{B} .

If T is measurable and non-singular, we put $\mathfrak{B}_1 = \{T^{-1}E; E \in \mathfrak{B}\}$. Then, from the Radon-Nikodym theorem, there exists a measurable function w(x) such that

$$m(TE) = \int_{E} w(x) dm$$

for every set E of \mathfrak{B}_1 . Let us now put

$$w_0(x) = 1, \quad w_n(x) = w(x) \cdots w(T^{n-1}x)$$

for any point x of X and for n=1, 2, ... Then we obtain the recurrence formula:

$$w_{i+j}(x) = w_i(T^j x) \cdot w_j(x)$$

for $i, j=0, 1, 2, \ldots$.

Y. N. Dowker $[1]^{1}$ has offered the following question concerning the extension of Halmos' ergodic theorem [2] for one to one transformation to the case of a single valued transformation: whether, for a single valued, measurable, non-singular transformation T of X onto itself, the condition that T is incompressible (or some similar condition) yields that, for any measurable function g(x)which is positive almost everywhere, the series $\sum_{i=0}^{\infty} g(T^i x) w_i(x)$ diverges almost everywhere?

¹⁾ Numbers in square brackets refer to the references at the end of this paper.