548 [Vol. 30,

115. On a Generalization of Groups

By Hiroshi HASHIMOTO

Mathematical Institute, Yamanashi University, Kōfu, Japan (Comm. by K. Shoda, M.J.A., July 12, 1954)

A group can be characterized as a multiplicative system with an operator θ satisfying the following three conditions:

$$egin{array}{ll} & (ab)c\!=\!a(bc), \ & ext{II} & (a^{\scriptscriptstyle 0}a)b\!=\!b, \ & ext{III'} & a^{\scriptscriptstyle 0}a\!=\!b^{\scriptscriptstyle 0}b. \end{array}$$

Now let us consider about a multiplicative system G with an operator θ satisfying I, II and

III
$$(ab)^{\theta} = b^{\theta}a^{\theta}$$
.

We shall call this a G-system. Then a group is a G-system satisfying $a=a^{00}$ for any element a. In this note we shall prove that a G-system is a product of a group and a subsystem consisting of all idempotents.

We shall firstly prove some properties about the operator θ .

1.
$$a^{\theta\theta\theta} = a^{\theta}$$
.

Proof. From II we obtain $a^0ab=b$. Multiplying the both sides by a^{00} from the left, we have $ab=a^{00}b$ by II and $b^0a^{000}=b^0a^0$ by III. Multiplying the both sides by b^{00} from the left, we have $a^{000}=a^0$.

2.
$$ex=x$$
 and $e^{\theta}=e$ for $e=a^{\theta\theta}a^{\theta}$.

Proof.
$$ex=(a^{\theta})^{\theta}a^{\theta}x=x$$
, $e^{\theta}=(a^{\theta\theta}a^{\theta})^{\theta}=a^{\theta\theta}a^{\theta\theta\theta}=a^{\theta\theta}a^{\theta}=e$.

3.
$$a^{\theta\theta}a^{\theta}=b^{\theta\theta}b^{\theta}$$
.

Proof.
$$b^{\theta} = (eb)^{\theta} = b^{\theta}e^{\theta} = b^{\theta}e$$
, hence $b^{\theta\theta}b^{\theta} = b^{\theta\theta}b^{\theta}e = e$.

4.
$$a^{\theta}a^{\theta\theta}=a^{\theta\theta}a^{\theta}$$
.

Proof. Putting $b=a^{\theta}$ in 3 we obtain $a^{\theta\theta}a^{\theta}=a^{\theta\theta\theta}a^{\theta\theta}=a^{\theta}a^{\theta\theta}$.

5.
$$xe=x^{\theta\theta}$$
.

Proof. If we put y=xe, then $x^{\theta}xe=x^{\theta}y$ and $e=x^{\theta}y$. Therefore $y=x^{\theta\theta}x^{\theta}y=x^{\theta\theta}e=x^{\theta\theta}x^{\theta}x^{\theta}x^{\theta}=x^{\theta\theta}$.

6.
$$e=aa^{\theta}$$
.

Proof. $ae=a^{\theta\theta}$ by 5. Multiplying the both sides by a^{θ} from the right, we have $aea^{\theta}=a^{\theta\theta}a^{\theta}=e$. On the other hand, $aea^{\theta}=a(ea^{\theta})=aa^{\theta}$.

Since θ is an anti-endomorphism of G and the condition III' holds in G^0 by 3, G^0 is a group. Let $\{C(a)\}$ be the set of classes C(a) of G induced by the anti-endomorphisms θ , where C(a) is the class involving a. Then the set forms a group anti-isomorphic to G^0 .

Theorem 1. C(e) is a set of all idempotents in G.

Proof. II implies $a^{\theta}a^2=a$, therefore $a^{\theta}a=a$, $a^{\theta}=(a^{\theta}a)^{\theta}=a^{\theta}a^{\theta\theta}=e$