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1. Introduction. The well-known Green formula for functions
of two variables, may be stated as follows:
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where u(x, y) and v(x, y) are functions of class C and R is a bounded
planar region with boundary C. Then, from (1) we have

Theorem 1. If u and v are harmonic in R, then
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In 2, we shall prove a theorem which is a sort of inverse of
Theorem I. For the proof, we use the method due to Beekenbach
[13. On the other hand it is known hat

Theorem 2. If u(x, y) is harmonic in a planar domain R, then
for any closed circle C(x, y; r) contained in R.
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Further Levi 2j and Tonelli 3 proved tha if u(x, y) is con-
tinuous in R and (3) holds for any closed circle C contained iu
R, Chen u(x, y) is harmonic in R.

We prove a similar Cheorem in 3.
2. Lemma 1 (Saks 4J). If u(x, y) belongs to the class C

and for any closed circle C(x, y; r) contained in D
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then, u(x, y) is harmonic in D.

As an inverse of Theorem 1, we prove
Theorem I. If u(x, y) and v(x,y) belong to the class C in a

1) (r)=o(r) means that lim ._(r) =0.
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