Now since C is convex, $\lambda x_{n}+(1-\lambda) x_{m}$ is in C, so that

$$
\left\|x_{n}-x_{m}\right\|^{2}<\frac{(\rho+\varepsilon)^{2}}{\lambda(1-\lambda)}-\frac{\rho^{2}}{\lambda(1-\lambda)}<\frac{(2 \rho+\varepsilon) \varepsilon}{\alpha^{2}} .
$$

Let $x_{0}=\lim _{n \rightarrow \infty} x_{n}$, then x_{0} is in C since C is closed, and it follows from the continuity of the norm that $\left\|x_{0}\right\|=\rho$. It is an immediate consequence of Lemma 1 and the condition (*) that the element x_{0} is unique.

We shall now proceed to prove the above-mentioned statement. Let x_{0} be an element of E which does not belong to M; then the set $\left\{y-x_{0} \mid y \in M\right\}$ is clearly convex and closed, so by Lemma 2 there is a unique element y_{0} such that $\left\|y_{0}-x_{0}\right\| \leqq\left\|y-x_{0}\right\|$ for all $y \in M$.

It is easy to see that for all $y \in M$, we have

$$
\left\|y-y_{0}\right\| \leqq\left\|y-x_{0}\right\|
$$

In fact, if $\left\|y-y_{0}\right\|$ is greater than $\left\|y-x_{0}\right\|$ for some $y \in M$, then in virtue of Lemma 1 there exists a $\lambda, 0<\lambda<1-\alpha$, such that

$$
\left\|\lambda y+(1-\lambda) y_{0}-x_{0}\right\|<\left\|y_{0}-x_{0}\right\|
$$

which is a contradiction since $\lambda y+(1-\lambda) y_{0}$ is in M.
Now we define $\quad I^{*}(x)=I(y)+\lambda y_{0}=y+\lambda y_{0}$
for any $x=y+\lambda x_{0}, y \in M, \lambda \in R$.
Then it is clear that I^{*} is linear and an extension of I to $M+R x_{0}$, and hence it remains only to prove the continuity of I^{*} and that the norm is 1 . For that matter the relation

$$
\left\|y+\lambda y_{0}\right\|=|\lambda| \cdot\left\|\lambda^{-1} y+y_{0}\right\|
$$

holds for $\lambda \neq 0$.
On the other hand, $\left\|\lambda^{-1} y+y_{0}\right\| \leqq\left\|-\lambda^{-1} y-x_{0}\right\|$,
and so $\quad\left\|y+\lambda y_{0}\right\| \leqq\left\|y+\lambda x_{0}\right\|$,
which guarantees the continuity of I^{*} and shows the norm is 1 . Thus we have reached the desired conclusion.

> Additions and Corrections to Shouro Kasahara:
> " A Note on f-completeness""
> (Proc. Japan Acad., 30, No. 7, $572-575$ (1954))

Pages 572-573, delete " Proposition 2".
Page 574, delete "Proposition 6".
Page 574, line 19 from foot, for " mapping of W, we have $p(I *(x)) \leqq p(x)$ for any $p \in\left(p_{\alpha}\right)$ and $x \in E$." read " mapping of W, concerning to $p \in\left(p_{\alpha}\right)$, we have $p *(I(x))$ $\leqq p(x)$ for any $x \in E$. .'.

Page 574, lines $26-29$, delete "Now, since...inequality ($*$) for u^{*}.".
Pape 574, line 10 from foot, for "for any $p \in\left(p_{\alpha}\right)$ there is" read "there exist a $p \in\left(p_{\alpha}\right)$ and ".

Page 574, line 2 from foot, for "same a " read " same p and a ".

