176. On Abhomotopy Group in Relative Case

By Yoshiro INOUE

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Introduction

The (n, r)-th abhomotopy group $\kappa_r^n(Y, y_0)$ of a space Y as base point $y_0 \in Y$ was defined by S. T. Hu as a generalization of Abe groups (M. Abe [1]). He showed that its algebraic structure is completely determined in terms of homotopy groups of Y, and that

(*)
$$\kappa_r^n(Y, y_0) \approx \pi_{r+1}(Y^{S^{n-r-1}}, k_0) \quad r \ge 0,$$

where $Y^{s^{n-r-1}}$ is a mapping space consisting of all maps $f: S^{n-r-1} \rightarrow Y$ and topologized by compact open topology due to R. H. Fox (R. H. Fox [2]), and k_0 is a constant map: $k_0: S^{n-r-1} \rightarrow y_0$ (S. T. Hu[3]). In this paper, I shall show that the notion of abhomotopy group is relativized by using the same relation as (*). In this paper, we always denote by Y a given topological space, by Y_0 a subspace of Y and y_0 a reference point of Y_0 . Then the (m, n)-th relative abhomotopy group $\kappa_n^m(Y, Y_0, y_0)$ of (Y, Y_0, y_0) is defined by

$$(**)$$
 $\kappa_n^m(Y, Y_0, y_0) = \pi_m(Y^{E^n}\{S^{n-1}, Y_0\}, k_0)$ $m, n \ge 1,$

where $Y^{\mathbb{E}^n}\{S^{n-1}, Y_0\}$ is a mapping space consisting of all maps $f: \mathbb{E}^n, S^{n-1} \to Y, Y_0$ and topologized by compact open topology. I shall show that, in § 2, its algebraic structure is completely determined by $\pi_{m+n}(Y, Y_0, y_0)$ and $\pi_m(Y_0, y_0)$. In § 1, for a preliminary of § 2, I describe a definition of relative homotopy groups which is obtained by a slightly modification of that of absolute homotopy groups given in the book "S. T. Hu [4] § 21".

§1. Preliminary. 1.1. Let I^{n+1} be the (n+1)-cube, and I^{n+1} be the boundary of I^{n+1} as usual. We use the following notations:

$$I^{n} = \{x^{n+1} = (x_{1}, \dots, x_{n+1}) \in I^{n+1} | x_{n+1} = 0\},\$$

$$J^{n} = I^{n+1} - I^{n},\$$

$$P^{n}_{n} = \{x^{n+1} = (x_{1}, \dots, x_{n+1}) \in I^{n+1} | x_{n} = 0\},\$$

$$x_{0} = (0, \dots, 0) \in I^{n+1}.$$

Let $\mathfrak{F} = Y^{J^n}\{\dot{I^n}, Y_0; x_0, y_0\}$ be the totality of maps $f: J^n, \dot{I^n}, x_0 \to Y, Y_0, y_0$. The maps f of \mathfrak{F} are divided into disjoint homotopy classes relative to $\{\dot{I^n}, Y_0; x_0, y_0\}$. Denote by \mathcal{Q} the totality of these classes and by [f] the class containing $f \in \mathfrak{F}$. Let f be a representative of an arbitrary element α of $\pi_n(Y, Y_0, y_0)$. Define a map $\mu f: J^n \to Y$ by taking for each $x^{n+1} = (x_1, \ldots, x_{n+1}) \in J^n$