174. Dirichlet Problem on Riemann Surfaces. III (Types of Covering Surfaces)

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Let \underline{R} be a null-boundary Riemann surface and let R be a positive boundary Riemann surface given as a covering surface.

1) If $\mu(R, \mathfrak{A}(R, \underline{R}^*))=1$, we call R a covering surface of D-type over \underline{R} .

2) We map R^{∞} onto the unit-circle $U_{\xi}: |\xi| < 1$ conformally. If the composed function $\underline{z} = \underline{z}(\xi): U_{\xi} \to R \to \underline{R}^{*}$ has angular limits with respect to \underline{R} almost everywhere on $|\xi| = 1$. We call R a covering surface of F-type over \underline{R} .

3) Let T(r) be the characteristic function of the mapping $R \rightarrow \underline{R}$. If T(r) is bounded, we say, R is a covering surface of bounded type. By Theorem 1.1, it is easy to see that we have

Bounded type $\xrightarrow{1}{\mathcal{Y}}$ *F*-type \rightarrow *D*-type, and that *F*-type implies $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*}))=1$. If the universal covering surface of the projection of *R* is hyperbolic, $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*}))=1$ implies that *R* is a covering surface of *F*-type, because $\mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}))=0$.

Let \hat{R} be a covering surface over R. In the following, we investigate the relations between Riemann surface \hat{R} and R. By Theorem 1.1 we have at once the following

Theorem 3.1. If R is a covering surface of bounded type, then \hat{R} is also of bounded type relative to \underline{R} .

Theorem 3.2. Let R be a covering surface such that the universal covering surface of the projection \underline{R}'^{∞} of R is hyperbolic. We map \underline{R}'^{∞} , R^{∞} and \widehat{R}^{∞} conformally onto the unit-circles $U_{\xi}:|\xi| < 1, U_{\eta}:|\eta| < 1$ and $U_{\zeta}:|\zeta| < 1$ respectively. Let $\eta = \eta(\zeta), \ \xi = \xi(\zeta)$ and $\xi = \xi(\eta)$ be mappings $U_{\zeta} \rightarrow U_{\eta}, U_{\zeta} \rightarrow U_{\xi}$ and $U_{\zeta} \rightarrow U_{\xi}$ respectively. Then we have $\mu(\widehat{R}, \mathfrak{A}(\widehat{R}, \underline{R}^{*})) \geq \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, \underline{R}^{*})).$

Proof. Since $\mu(\underline{R}'^{\infty}, \mathfrak{A}(\underline{R}'^{\infty}, B)) = \mu(R^{\infty}, \mathfrak{A}(R^{\infty}, B)) = \mu(\widehat{R}, \mathfrak{A}(\widehat{R}, B)) = 0$ without loss of generality, we can suppose that every A.B.P. lies on <u>R</u>. Let A_{η} and A_{ζ} be images of $\mathfrak{A}(R^{\infty}, \underline{R})$ and $\mathfrak{A}(\widehat{R}, \underline{R})$ respectively, and let ${}_{\eta}S_{\zeta}, {}_{\xi}S_{\zeta}$ and ${}_{\xi}S_{\eta}$ be the sets where the corresponding functions

¹⁾ \rightarrow means implication.

²⁾ Measure of a set of A.B.P.'s of R^{∞} with projections on the ideal boundary B of <u>R</u>.