172. The Divergence of Interpolations. II

By Tetsujiro KAKEHASHI (Comm. by K. KUNUGI, M.J.A., Nov. 12, 1954)

Next we shall consider the function analytic interior to the circle C_R and with singularities of Y_m type on C_R . Such functions can be constructed by

(13)
$$f(z) = \varphi(z) + \sum_{k=1}^{N} \varphi_k(z) y_{m_k}(z; a_k); \ a_k = Re^{ia_k}$$

where $\varphi(z)$ and $\varphi_k(z)$ are functions single valued and analytic on and within the circle C_R , and a_k are points on C_R not necessarily distinct. For such functions, we have the following theorem.

Theorem 2. Let $P_n(z; f)$ be partial sums of the power series of f(z) represented by (13). Then

(14)
$$\overline{lim}_{n\to\infty} \left| n^p \left(\frac{R}{z}\right)^n P_n(z;f) \right| > 0 \quad \text{for} \quad |z| > R,$$

where p is the minimal real part of m_k in (13). Accordingly, $P_n(z; f)$ diverges at every point exterior to the circle C_R as n tends to infinity.

In the proof of this theorem, it is convenient to have the following lemma.

Lemma 3. Let A_k ; k=1, 2, ..., N be a given set of complex numbers not all equal to zeros. Let a_k ; k=1, 2, ..., N be mutually distinct angles between zero and 2π , and q_k ; k=1, 2, ..., N be a set of real numbers. Then we have

(15)
$$\overline{\lim}_{n\to\infty}|\sum_{k=1}^N A_k e^{-i(q_k \log n + n\alpha_k)}| > 0.$$

For a real number q not equal to zero, the relation

$$e^{-i(q\log n+n\alpha)} = \frac{1}{\Gamma(iq)} \int_{0}^{\infty} e^{-n(i+i\alpha)} t^{iq-1} dt; n=1, 2, \ldots$$

can be verified by the well-known formula

$$\Gamma(iq) = \int_{0}^{\infty} e^{-x} x^{iq-1} dx.$$

Then we have for α not equal to zero

$$\begin{split} \frac{1}{n} \sum_{\nu=1}^{n} e^{-i(q \log \nu + \nu a)} &= \frac{1}{n\Gamma(iq)} \int_{0}^{\infty} \frac{1 - e^{-n(t+ia)}}{1 - e^{-(t+ia)}} e^{-(t+ia)} t^{iq-1} dt \\ &= \frac{1}{\Gamma(iq+1)} \Big\{ \frac{1}{n} \int_{0}^{\infty} \frac{e^{-2(t+ia)}(1 - e^{-n(t+ia)})}{[1 - e^{-(t+ia)}]^2} t^{iq} dt \\ &- \int_{0}^{\infty} \frac{e^{-(n+1)(t-ia)}}{1 - e^{-(t+ia)}} t^{iq} dt + \frac{1}{n} \int_{0}^{\infty} \frac{e^{-(t+ia)}(1 - e^{-n(t+ia)})}{1 - e^{-(t+ia)}} t^{iq} dt \Big\} \end{split}$$