172. The Divergence of Interpolations. II

By Tetsujiro Kakehashi

(Comm. by K. Kunugi, m.J.A., Nov. 12, 1954)
Next we shall consider the function analytic interior to the circle C_{R} and with singularities of Y_{m} type on C_{R}. Such functions can be constructed by

$$
\begin{equation*}
f(z)=\varphi(z)+\sum_{k=1}^{N} \varphi_{k}(z) y_{m_{k}}\left(z ; a_{k}\right) ; a_{k}=R e^{\imath \alpha_{k}}, \tag{13}
\end{equation*}
$$

where $\varphi(z)$ and $\varphi_{k}(z)$ are functions single valued and analytic on and within the circle C_{R}, and a_{k} are points on C_{R} not necessarily distinct. For such functions, we have the following theorem.

Theorem 2. Let $P_{n}(z ; f)$ be partial sums of the power series of $f(z)$ represented by (13). Then

$$
\begin{equation*}
\varlimsup_{l i m_{n \rightarrow \infty}}\left|n^{p}\left(\frac{R}{z}\right)^{n} P_{n}(z ; f)\right|>0 \quad \text { for } \quad|z|>R, \tag{14}
\end{equation*}
$$

where p is the minimal real part of m_{k} in (13). Accordingly, $P_{n}(z ; f)$ diverges at every point exterior to the circle C_{R} as n tends to infinity.

In the proof of this theorem, it is convenient to have the following lemma.

Lemma 3. Let $A_{k} ; k=1,2, \ldots, N$ be a given set of complex numbers not all equal to zeros. Let $\alpha_{k} ; k=1,2, \ldots, N$ be mutually distinct angles between zero and 2π, and $q_{k} ; k=1,2, \ldots, N$ be a set of real numbers. Then we have

$$
\begin{equation*}
\widetilde{\lim }_{n \rightarrow \infty}\left|\sum_{k=1}^{N} A_{k} e^{-i c\left(\imath_{k} \log n+n \alpha_{k}\right)}\right|>0 . \tag{15}
\end{equation*}
$$

For a real number q not equal to zero, the relation

$$
e^{-i(q \log n+n a)}=\frac{1}{\Gamma(i q)} \int_{0}^{\infty} e^{-n(t+i a)} t^{t q-1} d t ; n=1,2, \ldots
$$

can be verified by the well-known formula

$$
\Gamma(i q)=\int_{0}^{\infty} e^{-x} x^{i q-1} d x
$$

Then we have for α not equal to zero

$$
\begin{aligned}
& \frac{1}{n} \sum_{v=1}^{n} e^{-i(g \log \nu+\nu \alpha)}=\frac{1}{n \Gamma(i q)} \int_{0}^{\infty} \frac{1-e^{-n(t+i \alpha)}}{1-e^{-(t+i \alpha)}} e^{-(t+i \alpha)} t^{i q-1} d t \\
& =\frac{1}{\Gamma(i q+1)}\left\{\frac{1}{n} \int_{0}^{\infty} \frac{e^{-2(t+i \alpha)}\left(1-e^{-n(t+i \alpha)}\right)}{\left[1-e^{-(t+i \alpha)}\right]^{2} d t}\right. \\
& \left.\quad-\int_{0}^{\infty} \frac{e^{-(n+1)(t-i \alpha)}}{1-e^{-(t+i \alpha)}} t^{i \alpha} d t+\frac{1}{n} \int_{0}^{\infty} \frac{e^{-(t+i \alpha)}\left(1-e^{-n(t+i \alpha)}\right)}{1-e^{-(t+i \alpha)}} t^{i q} d t\right\}
\end{aligned}
$$

