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Next we shall consider the function analytic interior to the
circle C. and with singularities of Y type on C. Such functions
can be constructed by

(13) f(z)=q(z) / ,Zlq(z)y(z; a); a--Re,
where cp(z) and opt(z) are functions single valued and analytic on and
within the circle C., and a are points on C not necessarily distinct.
For such unctions, we have the following theorem.

Theorem 2. Let P(z; f) be partial sums of the power series of
f(z) represented by (13). Then

14) lim.oo n(Rp(z;f) 0 or z I:>R,

where p is the minimal real part of m in (13). Accordingly, P(z; f)
diverges at every point exterior to the circle C as n tends to infinity.

In the proof of this theorem, it is convenient to have the
following lemma.

Lemma 3. Let A; k=l, 2,..., N be a given set of complex
numbers not all equal to zeros. Let a; k-l, 2,..., N be mutually
distinct angles between zero and 2, and q; k=l, 2,..., N be a set
of real numbers. Then we have

A O-qlogn+na)(15) lim,,l_ [>0.
For a real number q not equal to zero, the relation

can be verified by the well-known formula

hen we hae for no equal

F(iq + 1) [oj [1 e-(*+)]

1 --e-(+ --- 1--e-(’+) J


