170. Uniform Convergence of Fourier Series. III

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Japan (Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1954)

1. Introduction. S. Izumi and G. Sunouchi¹⁾ proved the following theorems concerning uniform convergence of Fourier series:

Theorem I. If

$$f(t) - f(t') = o\left(1/\log \frac{1}{|t-t'|}\right) as t, t' \rightarrow x$$

then the Fourier series of f(t) converges uniformly at t=x.

Theorem II. If

$$f(t)-f(t')=o\left(1/\log\log \frac{1}{|t-t'|}
ight)$$
 as $t,t'
ightarrow x$

and the nth Fourier coefficients are $O((\log n)^{\alpha}/n)$ for $\alpha > 0$, then the Fourier series of f(t) converges uniformly at t=x.

In this paper, we treat the case that the order of f(t)-f(t') is $o\left(1/\left(\log \frac{1}{|t-t'|}\right)^{\alpha}\right)(1>\alpha>0)$, $o\left(1/\left(\log \log \frac{1}{|t-t'|}\right)^{\alpha}\right)(\alpha>0)$ and

more generally $o\Big(1\Big/\Big(\log_k \frac{1}{|t-t'|}\Big)^{\alpha}\Big).$

2. Theorem 1. Let $0 < \alpha < 1$. If

$$f(t) - f(t') = o\left(1 / \left(\log \frac{1}{|t - t'|}\right)^{a}\right) \quad (t, t' \to 0)$$

and the nth Fourier coefficients of f(t) is of order $O(e^{(\log n)^{\alpha}}/n)$, then the Fourier series of f(t) converges uniformly at t=0.

Proof. We assume that $x_n \rightarrow 0$ and f(0)=0.

$$S_{n}(x_{n}) = \frac{1}{\pi} \int_{0}^{\pi} [f(x_{n}+t) + f(x_{n}-t)] \frac{\sin nt}{t} dt + o(1)$$

= $\frac{1}{\pi} \Big[\int_{0}^{\pi/n} + \int_{\pi/n}^{\pi e^{\beta(\log n)^{\alpha}/n}} + \int_{\pi e^{\beta(\log n)^{\alpha}/n}}^{\pi} \Big] + o(1)$
= $\frac{1}{\pi} [I + J + K] + o(1),$

say, where β is the least number >1 such that $2n | e^{\beta(\log n)^{\alpha}}$, then it is sufficient to prove that $s_n(x_n) = o(1)$ as $n \to \infty$.

Since f(x) is continuous, we have I=o(1).

¹⁾ S. Izumi and G. Sunouchi: Notes on Fourier analysis (XLVIII): Uniform convergence of Fourier series, Tôhoku Mathematical Journal, **3** (1951).