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1. Introduction. S. Izumi and G. Sunouchi" proved the follow-
ing theorems concerning uniform convergence of Fourier series:

Theorem I. If

f(t)- f(t’)--o (1/log 1 ) as t, t’--x

then the Fourier series of f(t) converges uniformly at t=x.
Theorem II. If

1f(t) f(t’)- o (1/log log ] -t _-t-- i--) as t, t’-->x

and the nth Fourier coefficients are O((logn)/n) for a>0, then the
Fourier series of f(t) converges uniformly at t=x.

In this paper, we treat the case that the order of f(t)-f(t)

(lff( ) llff( 1 ))(a>0) andis o log
t--t’i

more generally o(lff(log-i-t,-t,
2. Theorem 1. Let O<a< l. If

f(t)-f(t’)--o(1/(logi-t:t,i-)) (t,t’O)

and the nth Fourier cocients of f(t) is of order O(eC/n), then
the Fourier series of f(t) converges uniformly at t=0.

Proof. We assume that x,0 and f(0)=0.

&(x,3=Afl[f(x+ t)+ f(x,-t)] sin ntdt + o(1)
t

]n B(log

sy, where N is he least number >1 such hat 2le, then i

Sinee f() is continuous, we have 1=o(1).
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