201. Harmonic Measures and Capacity of Sets of the Ideal Boundary. I

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Dec. 13, 1954)

Let R be an abstract Riemann surface of positive boundary and let $\{R_n\}$ (n=0, 1, 2, ...) be its exhaustion with compact relative boundaries $\{\partial R_n\}^{1}$. Each ∂R_n consists of a finite number of analytic curves. Let D be a non compact subdomain whose relative boundary ∂D consists of at most an enumerably infinite number of analytic curves clustering nowhere in R. We say that a sequence $\{D \cap (R-R_n)\}$ determines a subset of the ideal boundary, which is denoted by B_D . In this article we shall introduce the harmonic measures and capacity of B_D and study their applications.

1. Harmonic Measures

Let U(z) be a continuous function in R. If there exists a number n such that $U(z) \ge 1-\varepsilon$ for given ε in $D \cap (R-R_n)$, we say that U(z) has $\liminf \ge 1$ in B_D . Let $\omega_{n,n+i}(z)$ be a bounded harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap D)$ such that $\omega_{n,n+i}(z)=0$ on $\partial R_{n+i}-D$ and $\omega_{n,n+i}(z)=1$ on $(\partial R_n \cap D) + (\partial D \cap R_{n+i})$. Then $\omega_{n,n+i+j}(z) \ge \omega_{n,n+i}(z)$ and $\omega_{n+i,j}(z) \le \omega_{n,j}(z)$. Put $\liminf_{n=\infty} \lim_{i=\infty} \omega_{n,n+i}(z)=\omega(z)$. We call $\omega(z)$ the outer harmonic measure of B_D . We define the inner harmonic measure of B_D similarly. Another definition is as follows: Let $\{v(z)\}$ be a class of continuous super-harmonic functions such that $0 \le v(z) \le 1$, $\lim v(z) \ge 1$ in B_D . Let V(z) be its lower envelope. Then it is easy to prove that $V(z)=\omega(z)$. Let R_0 be a compact disc in R and let $\omega'_{n,n+i}(z)$ be a bounded harmonic function in $R_{n+i}-((R_{n+i}-R_n)\cap D)-R_0$ such that $\omega'_{n,n+i}(z)=0$ on $\partial R_0+(\partial R_{n+i}-D)$ and $\omega'_{n,n+i}(z)=1$ on $(\partial R_n \cap D)+(\partial D \cap R_{n+i})$.

Then $\lim_{n\to\infty} \lim_{i\to\infty} \omega'_{n,n+i}(z) = \omega'(z)$. We have at once from the definition the following

Theorem 1. Let B_{D_1} and B_{D_2} be two subsets of ideal boundary and let $\omega_{D_i}(z)$ be harmonic measures of B_{D_i} . Then

 $\omega_{D_1}(z) + \omega_{D_2}(z) \ge \omega_{D_1 + D_2}(z), \quad \omega'_{D_1}(z) + \omega'_{D_2}(z) \ge \omega'_{D_1 + D_2}(z).$

If $D' \supset ((R-R_m) \cap D)$ for a number *m*, we say that D' covers B_D . Let $D_1 \supset D_2, \ldots$ be a sequence of non compact domains containing B_D and let U(z) be a positive harmonic function in *R*. We denote

¹⁾ In this article, we denote by ∂G the relative boundary of G.