Harmonic Measures and Capacity of Sets of the 7. Ideal Boundary. II

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1955)

Let R be a positive boundary Riemann surface and let D^{1} be a non compact domain determining a subset B_{D} of the ideal boundary. Put $D_n = (R - R_n) \cap D$. Let $U_{n,n+i}(z)$ be a harmonic function in R_{n+i} - $R_0 - D_n$ such that $U_{n,n+i}(z) = 0$, on ∂R_0 , $U_{n,n+i}(z) = 1$ on ∂D_n and $rac{\partial U_{n,n+i}}{\partial n} = 0$ Then $\lim \lim U_{n,n+i}(z) = \lim U_n(z) = U(z)$, where U(z)on $\partial R_{n+i} - D_n$. is the equilibrium potential of B_D . We have proved that

$$\int_{\partial E_0} \frac{\partial U_n}{\partial n} ds = \int_{\partial G_{\mathfrak{g}}} \frac{\partial U_n}{\partial n} ds \qquad (1)$$

for every G_{ε} except for at most one ε , where G_{ε} is the domain in which $U_n(z) > 1 - \varepsilon$. Let $U'_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-G_{\varepsilon}-R_0$ such that $U'_{n,n+i}(z)=0$ on ∂R_0 , $U'_{n,n+i}(z)=1-\varepsilon$ on $\partial G_{\varepsilon} \cap R_{n+i} ext{ and } rac{\partial U'_{n,n+i}}{\partial n} = 0 ext{ on } \partial R_{n+i} - G_{\varepsilon}. ext{ Then } \lim_{i \to \infty} U'_{n,n+i}(z) = U_n(z).$ Since every $U'_{n,n+i}(z) = 1 - \varepsilon$ on ∂G_{ε} , $\frac{\partial U'_{n,n+i}}{\partial n} \rightarrow \frac{\partial U_n}{\partial n} : \frac{\partial U'_{n,n+i}}{\partial n} \leq 0$ on every point of $\partial G_{\varepsilon} \cap R_{n+i}$. Hence by (1) and $\lim_{i \to \infty} \int_{\partial R_i} \frac{\partial U_{n,n+i}}{\partial n} ds =$ $\int_{\partial R_0} \frac{\partial U_n}{\partial n} ds$, we easily that

$$\lim_{i=\infty}\int_{\partial G_{\mathfrak{s}}}\varphi_{i}\frac{\partial U'_{n,n+i}}{\partial n}ds = \int_{\partial G_{\mathfrak{s}}}\varphi\frac{\partial U_{n}}{\partial n}ds \qquad (2)$$

on ∂G_{ε} for every bounded sequence of continuous functions $\varphi_i \rightarrow \varphi$: $|\varphi_i| \leq M < \infty$.

We denote by G_n the domain in which $U_n(z) > 1 - \varepsilon_n$, where $\varepsilon_1 > \varepsilon_2 > \cdots$; lim $\varepsilon_n = 0$ and every ε_n satisfies the condition (1).

Let $U''_{n,n+i}(z)$ be a harmonic function in $R_{n+i}-R_0-G_n$ such that $U_{n,n+i}''(z) = U(z) \text{ on } \partial G_{\varepsilon} + \partial R_0 \text{ and } \frac{\partial U_{n,n+i}''}{\partial n} = 0 \text{ on } \partial R_{n+i} - G_n.$ Since $U_n(z)$ is the function such that $U_n(z)=1-\varepsilon_n$ and $U_n(z)$ has the minimum Dirichlet integral over $R - R_0 - G_n$, and since $\lim U_n(z) = U(z)$ on ∂G_n , then by (2) we can prove as in the previous $paper^{2}$ TT!!

$$\lim_{n \to \infty} \lim_{i \to \infty} U_{n,n+i}^{::}(z) \equiv U(z).$$

¹⁾ See, the definition of non compact domain. "Harmonic measures and capacity. I". 2) See (1).