15. Some Remarks on Abhomotopy Groups

By Yoshiro INOUE

(Comm. by K. KUNUGI, M.J.A., Feb. 18, 1955)

1. Introduction. Abhomotopy groups has been introduced by S. T. Hu as a generalization of Abe groups (S. T. Hu [5]). Our purpose of the present paper is to show that abhomotopy groups can be treated as a special case of homotopy groups of pseudo fibre spaces. In the preceding paper [7], I defined abhomotopy groups of relative case. In latter part of this paper, I shall show that this groups is treated by the same method as above.

2. Pseudo Fibre Spaces. By a pseudo fibre space (X, p, B), we understand a collection of two spaces X, B and a continuous mapping $p: X \rightarrow B$ of X onto B which satisfy the "Lifting homotopy theorem" (p. 63, P.J. Hilton [3]; p. 443, J. P. Serre [8]). In this paper, we shall use the "Proposition 1" in p. 443 of J. P. Serre [8], which is equivalent to the "Lifting homotopy theorem". We recall that the homotopy sequence of a pseudo fibre space (X, p, B):

 $(1) \longrightarrow \pi_{n+1}(B, b_0) \xrightarrow{d_{n+1}} \pi_n(X_0, x_0) \xrightarrow{i_n} \pi_n(X, x_0) \xrightarrow{p_n} \pi_n(B, b_0) \longrightarrow \cdots,$ $n \ge 1$, is exact, where b_0 is a point of B, and x_0 is a point of the fibre $X_0 = p^{-1}(b_0)$ over b_0 . In the sequel, we shall use these notations in these senses.

3. *T*-Operators. In the remainder of this paper, we assume that the total space X of a pseudo fibre space (X, p, B) is arcwise connected. J. P. Serre has proved in his paper [8] that $\pi_1(B)$ operate on the homology groups of the fibre X_0 . By the same method, $\pi_1(X)$ operate on the homotopy groups of X_0 . First, we prove the following theorem.

Theorem 1. Let (X, p, B) be a pseudo fibre space, x be a point of X and X_x be the fibre over $p(x) \in B$. Then, the collection of the n-th homotopy groups $\{\pi_n(X_x, x) \mid x \in X\}$ form a local system of groups in the space X. (For the definition of a local system of groups, refer to §13; S. T. Hu [6].)

(Proof) Let $\sigma: I \to X$ be a path joining two points x_0 and x_1 . Let $f: I^n \to X$ be a map of an element α of $\pi_n(X_{x_1}, x_1)$. Define a map $F: I^n \times 0 \smile \dot{I}^n \times I \to X$ by taking for each $x^n \in I^n$, $t \in I$ $F(x^n, t) = \begin{cases} f(x^n) & \text{on } I^n \times 0 \\ w(1-t) & \text{on } \dot{I}^n \times I. \end{cases}$

Then the map $G=pF: I^n \times 0 \smile I^n \times I \rightarrow B$ has the extention $G': I^n \times I \rightarrow B$ defined by $G'(x^n, t)=p\omega(1-t)$. By the "Proposition 1" in p. 443