32. Note on the Isomorphism Problem for Free Algebraic Systems

By Tsuyoshi FuJiwara
Department of Mathematics, Yamaguchi University
(Comm. by K. Shoda, m.J.A., March 12, 1955)

Let $V=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ be the system of single-valued compositions, and A the family of composition-identities with respect to V, and let $E=\left\{a_{1}, a_{2}, \ldots\right\}$ be the free generator system. Then it is easily verified that the free A-algebraic system $A^{V}(E)$, or shortly $A(E)$, can be defined. Let $F=\left\{b_{1}, b_{2}, \ldots\right\}$ be another free generator system. If the cardinal numbers of E and F are equal, then it is clear that $A(E) \cong A(F)$.*)

In this note we shall show that, under some conditions of $A(E)$, $A(E) \cong A(F)$ if and only if the cardinal numbers of E and F are equal, i.e. we shall give the solution of the isomorphism problem for the free A-algebraic system satisfying such conditions. And the isomorphism problems of free groups, free lattices, and others can be easily solved as the special cases of our results.

Theorem I. Let $A(E)$ be a free A-algebraic system satisfying the following two conditions:

1) the composition-identity $x=y$ is not derived from A,
2) the cardinal number of E is infinite.

Then $A(E) \cong A\left(F^{\prime}\right)$ if and only if the cardinal numbers of E and F are equal.

Proof. "If"-part of this theorem is immediate. Hence we shall prove "only if "'-part.

Let $E=\left\{a_{1}, a_{2}, \ldots\right\}$ and $F=\left\{b_{1}, b_{2}, \ldots\right\}$. Now suppose that $\bar{E}>\bar{F}^{* *)}$ in spite of $A(E) \cong A(F)$. First we can suppose $A(E)$ $=A(F)$ instead of $A\left(E^{\prime}\right) \cong A(F)$, without loss of generality. Hence b_{1}, b_{2}, \ldots are represented by finite compositions of finite elements in E respectively, i.e.

$$
b_{1}=f_{1}(E), b_{2}=f_{2}(E), \ldots
$$

Let E^{\prime} be the set of all the elements in E which appear in some $f_{i}(E)$. Then the cardinal number of E^{\prime} is smaller than \bar{E}. Hence there exists an element $a_{j} \in E$ such that $a_{j} \notin E^{\prime}$. And a_{j} is also represented by finite compositions of finite elements in F, i.e. $a_{j}=\varphi(F)$. Putting $f_{1}(E), f_{2}(E), \ldots$ in places of b_{1}, b_{2}, \ldots respectively, we get $a_{j}=\psi(E)$. Taking off unnecessary elements from E in this identity, we get $a_{j}=\psi\left(E^{\prime \prime}\right)$, where $E^{\prime \prime}$ is a finite set contained in E^{\prime}.

[^0]
[^0]: *) K. Shoda: Allgemeine Algebra, Osaka Math. J., 1 (1949).
 **) \bar{E} denotes the cardinal number of E.

