32. Note on the Isomorphism Problem for Free Algebraic Systems

By Tsuyoshi FUJIWARA

Department of Mathematics, Yamaguchi University (Comm. by K. SHODA, M.J.A., March 12, 1955)

Let $V = \{a_1, a_2, \ldots\}$ be the system of single-valued compositions, and A the family of composition-identities with respect to V, and let $E = \{a_1, a_2, \ldots\}$ be the free generator system. Then it is easily verified that the free A-algebraic system $A^V(E)$, or shortly A(E), can be defined. Let $F = \{b_1, b_2, \ldots\}$ be another free generator system. If the cardinal numbers of E and F are equal, then it is clear that $A(E) \simeq A(F)$.*⁹

In this note we shall show that, under some conditions of A(E), $A(E) \cong A(F)$ if and only if the cardinal numbers of E and F are equal, i.e. we shall give the solution of the isomorphism problem for the free A-algebraic system satisfying such conditions. And the isomorphism problems of free groups, free lattices, and others can be easily solved as the special cases of our results.

Theorem I. Let A(E) be a free A-algebraic system satisfying the following two conditions:

1) the composition-identity x=y is not derived from A,

2) the cardinal number of E is infinite.

Then $A(E) \simeq A(F)$ if and only if the cardinal numbers of E and F are equal.

Proof. "If"-part of this theorem is immediate. Hence we shall prove "only if"-part.

Let $E = \{a_1, a_2, \ldots\}$ and $F = \{b_1, b_2, \ldots\}$. Now suppose that $\overline{E} > \overline{F}^{**}$ in spite of $A(E) \cong A(F)$. First we can suppose A(E) = A(F) instead of $A(E) \cong A(F)$, without loss of generality. Hence b_1, b_2, \ldots are represented by finite compositions of finite elements in E respectively, i.e.

 $b_1 = f_1(E), b_2 = f_2(E), \ldots$

Let E' be the set of all the elements in E which appear in some $f_i(E)$. Then the cardinal number of E' is smaller than \overline{E} . Hence there exists an element $a_j \in E$ such that $a_j \notin E'$. And a_j is also represented by finite compositions of finite elements in F, i.e. $a_j = \varphi(F)$. Putting $f_1(E), f_2(E), \ldots$ in places of b_1, b_2, \ldots respectively, we get $a_j = \psi(E)$. Taking off unnecessary elements from E in this identity, we get $a_j = \psi(E'')$, where E'' is a finite set contained in E'.

^{*&}gt; K. Shoda: Allgemeine Algebra, Osaka Math. J., 1 (1949).

^{**)} \overline{E} denotes the cardinal number of E.