28. On the Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. I

By Masakiti KINUKAWA

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

1. Let f(x) be an integrable function with period 2π and its Fourier series be

(1.1)
$$f(x) \sim a_0/2 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x).$$

We call the series

(1.2)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(t),$$
$$\sum_{n=1}^{\infty} n(b_n \cos nx - a_n \sin nx) = \sum_{n=1}^{\infty} A'_n(t)$$

and

(1.3)
$$\sum_{n=1}^{\infty} n(a_n \cos nx + b_n \sin nx) = \sum_{n=1}^{\infty} nA_n(x)$$

conjugate series, derived series and conjugate derived series of (1.1), respectively.

The infinite series $\sum a_n$ is said to be summable by Riesz's logarithmic mean of order α , or simply summable (R, \log, α) , to sum s, provided that

$$R_{a}(\omega) = \frac{1}{(\log \omega)^{a}} \sum_{n < \omega} (\log \omega/n)^{a} a_{n}$$

tends to a limit s, as $\omega \rightarrow \infty$.

The summability by Riesz's logarithmic means of the Fourier series was treated by Hardy [1], Takahashi [3], and Wang [4], [5], [6]. Wang has proved the Riesz summability analogue of Bosanquet's theorem concerning Cesàro summability of Fourier series. This theorem was extended to the derived Fourier series by Matsuyama [2]. In this paper we shall prove the analogue for the conjugate derived Fourier series and some related theorems.

We shall introduce some notations. Let us put

$$g_0(t) = g(t),$$

$$g_\alpha(t) = \frac{1}{\Gamma(\alpha)} \int_t^{\pi} \left(\log \frac{u}{t} \right)^{\alpha - 1} \frac{g(u)}{u} du \qquad (\alpha > 0).$$

Then $g_{\alpha}(t) / \left(\log \frac{1}{t} \right)^{\alpha}$ is called the Riesz logarithmic mean of g(t) of order α . If the Riesz logarithmic mean of g(t)-s tends to zero as $t \to 0$, then we write

$$\lim_{t\to 0} g(t) = s \ (R, \log, \alpha).$$