27. On the Number of Distinct Values of a Polynomial with Coefficients in a Finite Field

By Leonard CARLITZ

Department of Mathematics, Duke University, U.S.A. (Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

1. Let $GF(q)$ denote the finite field of order $q=p^{\nu}$ and put (1.1) $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x$ 1. Let $G_F(q)$ denote the finite field of order $q=p$ and put

(1.1) $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_1x$ $(a_j \in GF(q)),$

where $1 < n < p$. Let $V= V(f)$ denote the number of distinct values where $1 < n < p$. Let $V = V(f)$ denote the number of distinct values $f(x)$, $x \in GF(q)$. Uchiyama [2] has proved the following theorem: Suppose that

(1.2)
$$
f^*(u, v) = \frac{f(u) - f(v)}{u - v}
$$

is absolutely irreducible (that is, irreducible in every finite extension of $GF(q)$; then $V>q/2$ for all $n\geq 4$. It is pointed out this conclusion cannot be asserted without the hypothesis concerning $f^*(u, v)$; moreover the proof of the theorem makes use of a deep heorem of A. Well on the number of solutions of equations in two unknowns in a finite field.

In this note we wish to point out that it is easy to prove that $V>q/2$ on the average. More precisely we shall prove the following

Theorem. The sum

(1.3)
$$
\sum_{a_1 \in GF(q)} V(f) \ge \frac{q^3}{2q-1} \ge \frac{q^2}{2},
$$

where the summation is over the coefficient of the first degree term in $f(x)$.

We remark that this theorem is independent of any hypothesis on $f^*(u, v)$ and that the proof is quite elementary.

2. For $x \in GF(q)$, we define

(2.1) $e(x)=e^{2\pi i S(x)/p}, \qquad S(x)=x+x^p+\cdots+x^{p^{v-1}}.$ Then $e(x+y)=e(x)e(y)$ and (2.2) $\sum e(xy) = \begin{cases} q & (y=0) \\ 0 & (y=0) \end{cases}$

 $\hspace{.2cm} 0 \hspace{1.5cm} (y\textcolor{red}{\neq}0).$ Following the notation of $\lceil 2 \rceil$ we let M_r denote the number of $y \in GF(q)$ such that the equation $f(x)=y$ has precisely r distinct roots in $GF(q)$; then we have

(2.3)
$$
V = \sum_{r=1}^{n} M_r, \qquad q = \sum_{r=1}^{n} r M_r.
$$

Also if $N_1=N_1(f)$ is the number of solutions (x, y) of $f(x)-f(y)=0$, then

(2.4)
$$
N_1 = \sum_{r=1}^n r^2 M_r.
$$