25. On the Convergence of Some Gap Series

By Noboru MATSUYAMA and Shigeru TAKAHASHI

Mathematical Institute, Kanazawa University, Japan (Comm. by Z. SUETUNA, M.J.A., March 12, 1955)

§1. Let f(x), $-\infty < x < +\infty$, be a function satisfying the following conditions:

(1.1)
$$f(x+1)=f(x),$$

and

(1.2)
$$\int_{0}^{1} f(x) dx = 0, \qquad \int_{0}^{1} f^{2}(x) dx = 1.$$

Further, let us put

(1.3)
$$\omega(n) = \left(\int_{0}^{1} \left|f(x) - s_{n}(x)\right|^{2} dx\right)^{1/2}$$

where $s_n(x)$ denotes the *n*-th partial sum of the Fourier series of f(x).

The following theorems were proved for the sequence $\{n_k\}$ of integers which has the Hadamard gap.

Theorem of M. Kac, R. Salem, and A. Zygmund [1]. If $\omega(n) = O(1/(\log n)^{\alpha}),$ $(n \rightarrow + \infty)$ (1.4) $\alpha > 1$ and $\sum c_n^2 (\log n)^2 < \infty$, (1.5)then the series $\sum c_k f(n_k x)$ (1.6)converges almost everywhere. Theorem of S. Izumi [2]. If (1.7) $\omega(n)=O(1/n^{\alpha}),$ $\alpha > 0$ $(n \rightarrow + \infty)$ and $\sum c_n^2 (\log_2 n)^2 < +\infty$, (1.8)then (1.6) converges almost everywhere.

The purpose of this paper is to generalize above results. Following G. Alexits [3], we shall say that a sequence $\{a_n\}$ is $\lambda(n)$ -lacunary if

(1.9) [the number of n's such that $a_n \neq 0$ for $2^k \leq n < 2^{k+1} = O(\lambda(k))$ $(k \rightarrow +\infty)$, where $\{\lambda(n)\}(n=0, 1, 2, ...)$ is a non-decreasing sequence of positive numbers.

In the following, we shall assume that the sequence $\{a_n\}$ is $\lambda(n)$ -lacunary and treat the convergence problem of the series

(1.10)
$$\sum_{k=1}^{\infty} a_k f(kx).$$