24. On the Strong Summability of the Derived Fourier Series. II

By Shin-ichi IZUMI and Masakiti KINUKAWA Mathematical Institute, Tokyo Metropolitan University, Japan (Comm. by Z. Suetuna, M.J.A., March 12, 1955)

1. B. N. Prasad and U. N. Singh [1] have proved the following

Theorem 1. Let f(t) be a continuous function of bounded variation, with period 2π , and let

$$g_x(u) = g(u) = f(x+u) - f(x-u) - 2us$$

then, if

$$\int_{0}^{t} dg(u) = O\left[t / \left(\log \frac{1}{t}\right)^{1+\epsilon}\right] \quad (t \to 0)$$

for a positive ε , then the derived Fourier series of f(t) is strongly summable (or H_1 -summable) to s at x, that is

$$\lim_{n\to\infty}\frac{1}{n}\sum_{\nu=1}^n|\tau_{\nu}(x)-s|=0$$

 $\tau_n(x)$ being the n-th partial sum of the derived Fourier series of f(x).

In the first paper [2], one of us proved that under the assumption of Theorem $1^{(1)}$

(3)
$$\lim_{n\to\infty} \frac{1}{n} \sum_{\nu=1}^{n} |\tau_{\nu}(x) - s|^{k} = 0,$$

for any k>0. But in its proof it is used, without stating explicitly, that the summability (H_k) is the local property for the derived Fourier series of f(x). This is true by Wiener's theorem (A. Zygmund [6], p. 221).

We shall now consider an extension of Theorem 1 in the case $k \leq 2$. In fact we shall prove

Theorem 2. If

$$\int_0^t |dg(u)| = O\Big[t\Big/\Big(\log rac{1}{t}\Big)^a\Big] \qquad (t o 0),$$

then

$$\lim \frac{1}{n} \sum_{\nu=1}^{n} |\tau_{\nu}(x) - s|^2 = 0$$
 for $\alpha > 1/2$.

This is the analogue of Wang's theorem for Fourier series [3]. We can also prove the following

Theorem 3. In Theorem 2, if the condition (4) is replaced by

¹⁾ In [2], $\tau_{\nu}^*(x)$ may be replaced by $\tau_{\nu}(x)$ and the last section, containing Theorems 3 and 4, must be omitted.