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49. Integrability of Trigonometrical Series. II
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1. We shall consider the trigonometrical series

() cv

Given a sequence Co c, c_ such that c->0, let Co* :> c* => c*
c ... be the sequence Co I, c [, c_ !,... arranged in the descending
order of magnitude.

Recently R. P. Boas [1] proved the following

Theorem B. If 1 < q 2, 1 p < q/(q-- 1), and a < 1-q/p’, .then
(1) is the Fourier series of a function of L if c,-->O and

( 2 ) c+-c_ l=O(m)
as m through the multiples of some fixed integer.

If a 1-q/p’ the conclusion no longer holds.
In this paper we prove the following theorems.
Theorem 1. If q2, pl, and O<a<q/p-1, then (1) is the

Fourier series of a function of L if c0 and

( ) (c+ c_)*n-=0(
as m through the multiples of some fixed integer.

If a=q/p- 1, a>q- 2, the conclusion no longer holds.

Theorem 2. If q 2, p l, q’ r q, -- l/r + l/q-1, and
O<a<q/p-1, then (1) is the .Fourier series of a function of L if
c 0 and

( 4 ) c.+-c_,( n l+ 1)--O(m/)

as m through the multiples of some fixed integer.

If aq/p-1 the conclusion no longer holds.
In Theorem 2, if r=q’ then it becomes Theorem B, and if r=q

then it becomes Theorem 1 except star. Hence Theorem 2 contains
Theorem B formally but Theorems 1 and 2 are mutually exclusive.

The proofs of Theorems 1 and 2 are similar to that of Theorem
B, the difference being to use the following Theorems HL1 and
HL2 [2, respectively, instead o the Hausdorff-Young theorem.
We prove here Theorem 1 only.

Theorem HL 1. If q2 then (1) is the Fourier series of a

function f(x) of L and


