49. Integrability of Trigonometrical Series. II

By Masako Satô

Mathematical Institute, Tokyo Metropolitan University, Tokyo (Comm. by Z. SUETUNA, M.J.A., April 12, 1955)

1. We shall consider the trigonometrical series

(1)
$$\sum_{n=-\infty}^{\infty} c_n e^{inx}$$

Given a sequence c_0, c_1, c_{-1}, \ldots such that $c_n \rightarrow 0$, let $c_0^* \ge c_1^* \ge c_{-1}^* \ge c_2^* \ge \cdots$ be the sequence $|c_0|, |c_1|, |c_{-1}|, \ldots$ arranged in the descending order of magnitude.

Recently R. P. Boas [1] proved the following

Theorem B. If $1 < q \leq 2$, $1 \leq p < q/(q-1)$, and $\alpha < 1-q/p'$, then (1) is the Fourier series of a function of L^p if $c_n \rightarrow 0$ and

(2)
$$\sum_{n=-\infty}^{\infty} |c_{n+m} - c_{n-m}|^q = O(m^a)$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.

If $a \ge 1 - q/p'$ the conclusion no longer holds.

In this paper we prove the following theorems.

Theorem 1. If $q \ge 2$, $p \ge 1$, and 0 < a < q/p - 1, then (1) is the Fourier series of a function of L^p if $c_n \to 0$ and

(3)
$$\sum_{n=-\infty}^{\infty} (c_{n+m} - c_{n-m})^{*q} n^{q-2} = O(m^{q})$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.

If $\alpha = q/p-1$, $\alpha > q-2$, the conclusion no longer holds.

Theorem 2. If $q \ge 2$, $p \ge 1$, $q' \le r \le q$, $\mu = 1/r + 1/q - 1$, and $0 < \alpha < q/p - 1$, then (1) is the Fourier series of a function of L^p if $c_n \rightarrow 0$ and

(4)
$$\sum_{n=-\infty}^{\infty} |c_{n+m} - c_{n-m}|^r (|n|+1)^{-\mu r} = O(m^{\alpha r/q})$$

as $m \rightarrow \infty$ through the multiples of some fixed integer.

If $a \ge q/p-1$ the conclusion no longer holds.

In Theorem 2, if r=q' then it becomes Theorem B, and if r=q then it becomes Theorem 1 except star. Hence Theorem 2 contains Theorem B formally but Theorems 1 and 2 are mutually exclusive.

The proofs of Theorems 1 and 2 are similar to that of Theorem B, the difference being to use the following Theorems HL 1 and HL 2 [2], respectively, instead of the Hausdorff-Young theorem. We prove here Theorem 1 only.

Theorem HL 1. If $q \ge 2$ then (1) is the Fourier series of a function f(x) of L^q and