47. On the Riesz Logarithmic Summability of the Conjugate Derived Fourier Series. II ${ }^{1)}$

By Masakiti Kinukawa

Mathematical Institute, Tokyo Metropolitan University, Japan
(Comm. by Z. Suetuna, m.J.A., April 12, 1955)
5. Proof of Theorem 2. We shall consider the integral

$$
\begin{aligned}
I_{1} & =\frac{1}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi} g_{\alpha}(t) \frac{1-\cos \omega t}{t} d t, \quad(\alpha \geqq 0), \\
& =\frac{1}{(\log \omega)^{\alpha+1}}\left\{\int_{0}^{\pi / \omega}+\int_{\pi / \omega}^{\pi}\right\}=I_{1,1}+I_{1,2}
\end{aligned}
$$

say. Integrating by parts, we have

$$
\begin{aligned}
I_{1,1} & =\frac{1}{(\log \omega)^{\alpha+1}}\left[g_{\alpha}^{1}(t) \frac{1-\cos \omega t}{t}\right]_{0}^{\pi / \omega} \\
& -\frac{1}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi / \omega} g_{\alpha}^{1}(t) \frac{t \omega \sin \omega t-(1-\cos \omega t)}{t^{2}} d t \\
& =o\left[\frac{1}{(\log \omega)^{\alpha+1}}(\log \omega)^{\alpha}\right]+o\left[\frac{\omega^{2}}{(\log \omega)^{\alpha+1}} \int_{0}^{\pi / \omega} t\left(\log \frac{1}{t}\right)^{\alpha} d t\right] \\
& =o(1 / \log \omega)=o(1)
\end{aligned}
$$

since $g_{\alpha}^{1}(t)=o\left[t(\log 1 / t)^{\alpha}\right]$ by the assumption of Theorem 2. Also

$$
\begin{aligned}
I_{1,2} & =\frac{1}{(\log \omega)^{\alpha+1}} \int_{\pi / \omega}^{\pi} \frac{g_{\alpha}(t)}{t} d t-\frac{1}{(\log \omega)^{\alpha+1}} \int_{\pi / \omega}^{\pi} \frac{g(t)}{t} \cos \omega t d t \\
& =I_{1,2,1}-I_{1,2,2}
\end{aligned}
$$

say, where

$$
I_{1,2,1}=\frac{1}{(\log \omega)^{\alpha+1}}\left[\frac{g_{\alpha}^{1}(t)}{t}\right]_{\pi / \omega}^{\pi}+\frac{1}{(\log \omega)^{x+1}} \int_{\pi / \omega}^{\pi} g_{\alpha}^{1}(t) \frac{1}{t^{2}} d t=o(1)
$$

and

$$
\begin{aligned}
& 2(\log \omega)^{\alpha+1} I_{1,2,2}=2 \int_{\pi / \omega}^{\pi} g_{\alpha}(t) \frac{\cos \omega t}{t} d t \\
& \quad=\int_{\pi / \omega}^{3 \pi / \omega} g_{\alpha}(t) \frac{\cos \omega t}{t} d t+\int_{\pi}^{\pi+\pi / \omega} g_{\alpha}(t) \frac{\cos \omega t}{t} d t \\
& \quad+\int_{\pi / \omega}^{\pi}\left\{\frac{g_{\alpha}(t)}{t}-\frac{g_{\alpha}(t+\pi / \omega)}{t+\pi / \omega}\right\} \cos \omega t d t
\end{aligned}
$$

The first term of the above expression is $o\left[(\log \omega)^{a+1}\right]$, as in the estimation of $I_{1,1}$ and the second term is $o(1)$, as easily may be seen. On the other hand, the third term becomes

$$
\int_{\pi / \omega}^{\pi} \frac{g_{\alpha}(t)-g(t+\pi / \omega)}{t} \cos \omega t d t
$$

1) Continued from p. 125. References are cited on p. 125.
