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5. Proof of Theorem 2. We shall consider the integral
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say. Integrating by parts, we have
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since gi(t)=o[t(log 1/t)*] by the assumption of Theorem 2. Also
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say, where
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The first term of the above expression is o[(log w)**!], as in the

estimation of I,, and the second term is o(1), as easily may be
seen. On the other hand, the third term becomes
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1) Continued from p. 125. References are cited on p. 125.




