117. Counter Examples to Wallace's Problem¹⁾

By Naoki KIMURA and Takayuki TAMURA Tokyo Institute of Technology and Gakugei Faculty of Tokushima University (Comm. by K. SHODA, M.J.A., Oct. 12, 1955)

A. D. Wallace proposed in his paper²) the following problem: If a compact mob³ has a unique left unit, is this also a right unit?

In this short note we shall show counter examples to the abovementioned problem without proof. We will write elsewhere⁴⁾ in these connections and about related topics with detailed discussion. Example 1 is given by N. Kimura and Example 2 by T. Tamura.

Example 1. Let S be a set of all pairs (x, y) such that $0 \leq x \leq y \leq 1$. Consider S as a topological space with the usual 2-dimensional plane topology, as well as a multiplicative system with multiplication;

$$(x, y)(x', y') = (xx', xy'),$$

where the multiplication in the parentheses at the right hand side will be understood as usual one.

Then S becomes a compact connected Hausdorff semigroup, and (1, 1) is a unique left unit. Moreover S has no right unit.

Example 2. Let A be a compact connected mob with twosided unit 1 and two-sided zero 0. Such a mob A really exists, for example, the interval of real numbers from 0 to 1 with the usual topology and multiplication. Let us consider a compact connected Hausdorff space B. If A and B are given, we can construct the union S of A and B such that A has only one 0 in common with B by identifying abstractly one element of B with 0 in A. The product xy in S is defined as the following manner:

for $x, y \in A$,
for $x \in B$, $y \in A$,
for $x \in S$, $y \in B$,

where $x \cdot y$ is the product of x and y in A. Next we shall introduce a topology into S. The neighborhood N(x) of x is defined as the following manner:

$ \text{if } 0 \neq x \in A, \\$	N(x) = U(x)	where $U(x)$ is a neighborhood of
		$x ext{ in } A$,
if $0 \neq x \in B$,	N(x) = V(x)	where $V(x)$ is a neighborhood of
		x in B ,