24 [Vol. 32,

6. On the Convergence Character of Fourier Series. II

By Masakiti KINUKAWA

Natural Science Division, International Christian University, Tokyo (Comm. by Z. Suetuna, M.J.A., Jan. 12, 1956)

1. Let f(x) be an integrable function with period 2π and $s_n(x)$ be the *n*th partial sum of its Fourier series. S. Izumi¹⁾ has proved the following

Theorem I. If f(x) belongs to the Lip $\alpha(0 < \alpha \le 1)$ class, then the series

$$\sum_{n=2}^{\infty} |s_n(x) - f(x)|^2 / n^{\beta} (\log n)^{\gamma}$$

converges uniformly, where $\beta=1-2\alpha$ and $\gamma>1$ or >2, according as $0<\alpha<1/2$ or $1/2\leq\alpha\leq1$.

In a previous paper,²⁾ we have shown that Theorem I is still valid even if the restriction $\gamma > 2$ is replaced by $\gamma > 1$ for $\alpha = 1/2$. The object of this paper is to show that the restriction $\gamma > 2$ in Theorem I may be replaced by $\gamma > 1$ for $\alpha \ge 1/2$. In fact we prove

Theorem 1. Let $1 \ge \alpha > 0$ and k > 0. If f(x) belongs to the Lip α class, then the series

$$\sum_{n=2}^{\infty} |s_n(x) - f(x)|^k$$

$$n^{\delta} (\log n)^{\Upsilon}$$

converges uniformly, where $\delta=1-k\alpha$ and $\gamma>1$.

Proof of Theorem 1.30 we have

$$egin{aligned} s_n(x) - f(x) &= rac{1}{\pi} \int_0^\pi arphi_x(t) \sin{(n+1/2)}t / \{2\sin{t/2}\} \ dt \ &= rac{1}{\pi} \int_0^\pi arphi_x(t) p(t) \sin{nt} \ dt + rac{1}{2\pi} \int_0^\pi arphi_x(t) \cos{nt} \ dt, \ &= P_n(x) + Q_n(x), \end{aligned}$$

where $\varphi_x(t) = \varphi(t) = f(x+t) + f(x-t) - 2f(x)$ and $p(t) = \cos t/2/\{2 \sin t/2\}$.

We may take a number p' such that $p' \ge 2$, $p' \ge k$ and $p' > 1/\alpha$ for given α and k.

By the Hausdorff-Young inequality, we get⁴⁾

¹⁾ S. Izumi: Some trigonometrical series. III, Proc. Japan Acad., **31**, 257–260 (1955).

²⁾ M. Kinukawa: On the convergence character of Fourier series, Proc. Japan Acad., 31, 513-516 (1955).

³⁾ M. Kinukawa: Some strong summability of Fourier series (to appear).

⁴⁾ A denotes an absolute constant, which may be different in each occurrence, and p' denotes the conjugate number of p, that is, 1/p+1/p'=1.