4. On Images of an Open Interval under Closed Continuous Mappings

By Kiiti MORITA

Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

1. Introduction. A mapping of a topological space X onto another topological space Y is said to be closed if the image of every closed subset of X is closed in Y. As is well known, in order that a metric space Y be the image of the closed line interval [0,1] under a closed continuous mapping it is necessary and sufficient that Y be a locally connected continuum.

In the present note we shall establish the following theorem, which is an analogue of the celebrated theorem of Hahn-Mazurkiewicz mentioned above and may be considered as a generalization of it since any closed continuous mapping of the open line interval (0,1) onto a locally connected continuum can be extended over [0,1]by our Theorem 3 below.

Theorem 1. In order that a metric space Y be the image of the open line interval (0,1) under a closed continuous mapping it is necessary and sufficient that Y be a separable, locally compact, connected, locally connected space with at most two end-points in the sense of Freudenthal (i.e. $\gamma(Y) - Y$ consists of at most two points).

Here $\gamma(Y)$ means the Freudenthal compactification of the space Y (cf. [1], [2]).

For any positive integer m let Q_m be the union of m closed segments $a_i a_0$, $i=1, 2, \cdots, m$, each two having only one point a_0 in common, and let P_m be the space obtained from Q_m by removing the points a_i , $i=1, 2, \cdots, m$. Then P_1 and P_2 are homeomorphic to (0,1]and (0,1) respectively, and hence Theorem 1 is contained in the following theorem.

Theorem 2. In order that a metric space Y be the image of P_m under a closed continuous mapping it is necessary and sufficient that Y be a separable, locally compact, connected, locally connected space with at most m end-points in the sense of Freudenthal.

2. Lemmas. We shall first prove

Lemma 1. Let f be a closed continuous mapping of a metric space X onto another metric space Y. If A is a closed subset of Y whose boundary $\mathfrak{B}A$ is compact, then $\mathfrak{B}f^{-1}(A)$ is also compact.

Proof. Let us put

$$V_i = A \cup \{y \mid \rho(y, \mathfrak{B}A) < 1/i\},\$$