3. Closed Mappings and Metric Spaces

By Kiiti MORITA and Sitiro HANAI (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

A mapping of a topological space X onto another topological space Y is said to be closed if the image of every closed subset of X is closed in Y. Concerning the problem: "Under what condition is the image of a metric space under a closed continuous mapping metrizable?", several interesting results have been obtained recently by G. T. Whyburn [6], A. V. Martin [3], and V. K. Balachandran [1]. In the present note, we shall give an answer to this problem by proving that the image space Y of a metric space X under a closed continuous mapping f is metrizable if and only if the boundary $\mathfrak{B}f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y. A problem raised by Balachandran [1] will also be solved.

1. We shall prove

Lemma 1. Let f be a closed continuous mapping of a normal T_1 -space X onto a topological space Y. If Y satisfies the first countability axiom, then $\mathfrak{B}f^{-1}(y)$ is countably compact for every point y of Y.

Proof. Let y be any point of Y. By the first countability axiom, there exists a countable collection $\{V_i \mid i=1, 2, \cdots\}$ of open neighborhoods of y such that for any open neighborhood U there can be found some V_i with $V_i \subset U$.

Suppose that $\mathfrak{B}f^{-1}(y)$ is not countably compact. Then there exist a countable number of points $x_i, i=1, 2, \cdots$ of $\mathfrak{B}f^{-1}(y)$ such that $\{x_i\}$ has no limit point. Then by the normality of X we can find a discrete collection $\{G_n\}$ of open sets of X such that

 $x_i \in G_i$ for $i=1, 2, \cdots$; $G_i \cap G_j=0$ for $i \neq j$

and $\{G_n\}$ is locally finite.

Since each point x_i belongs to the boundary $\mathfrak{B}f^{-1}(y)$ of $f^{-1}(y)$, there exists a point x'_i of X such that

$$x'_i \notin f^{-1}(y), \quad x'_i \in G_i \cap f^{-1}(V_i).$$

Then $\{x'_i | i=1, 2, \cdots\}$ is locally finite in X and hence the set C consisting of all points $x'_i, i=1, 2, \cdots$ is closed. Therefore if we put H=Y-f(C), H is an open set of Y. Since $x'_i \notin f^{-1}(y)$, we have $y \in H$. Hence there exists some V_i such that $V_i \subset H$. This implies that we have $f(x'_i) \notin V_i$ for some *i*. On the other hand we have chosen the point x'_i so that $x'_i \in f^{-1}(V_i)$. This is a contradiction. Thus Lemma 1 is proved.