3. Closed Mappings and Metric Spaces

By Kiiti Morita and Sitiro Hanai

(Comm. by K. Kunugr, m.J.A., Jan. 12, 1956)
A mapping of a topological space X onto another topological space Y is said to be closed if the image of every closed subset of X is closed in Y. Concerning the problem: "Under what condition is the image of a metric space under a closed continuous mapping metrizable?", several interesting results have been obtained recently by G. T. Whyburn [6], A. V. Martin [3], and V. K. Balachandran [1]. In the present note, we shall give an answer to this problem by proving that the image space Y of a metric space X under a closed continuous mapping f is metrizable if and only if the boundary $\mathfrak{B} f^{-1}(y)$ of the inverse image $f^{-1}(y)$ is compact for every point y of Y. A problem raised by Balachandran [1] will also be solved.

1. We shall prove

Lemma 1. Let f be a closed continuous mapping of a normal T_{1}-space X onto a topological space Y. If Y satisfies the first countability axiom, then $\mathfrak{B} f^{-1}(y)$ is countably compact for every point y of Y.

Proof. Let y be any point of Y. By the first countability axiom, there exists a countable collection $\left\{V_{i} \mid i=1,2, \cdots\right\}$ of open neighborhoods of y such that for any open neighborhood U there can be found some V_{i} with $V_{i} \subset U$.

Suppose that $\mathfrak{B} f^{-1}(y)$ is not countably compact. Then there exist a countable number of points $x_{i}, i=1,2, \cdots$ of $\mathfrak{B} f^{-1}(y)$ such that $\left\{x_{i}\right\}$ has no limit point. Then by the normality of X we can find a discrete collection $\left\{G_{n}\right\}$ of open sets of X such that

$$
x_{i} \in G_{i} \text { for } i=1,2, \cdots ; G_{\imath} \cap G_{j}=0 \text { for } i \neq j
$$

and $\left\{G_{n}\right\}$ is locally finite.
Since each point x_{i} belongs to the boundary $\mathfrak{B} f^{-1}(y)$ of $f^{-1}(y)$, there exists a point x_{i}^{\prime} of X such that

$$
x_{i}^{\prime} \notin f^{-1}(y), \quad x_{i}^{\prime} \in G_{i} \cap f^{-1}\left(V_{i}\right) .
$$

Then $\left\{x_{i}^{\prime} \mid i=1,2, \cdots\right\}$ is locally finite in X and hence the set C consisting of all points $x_{i}^{\prime}, i=1,2, \cdots$ is closed. Therefore if we put $H=Y-f(C), H$ is an open set of Y. Since $x_{i}^{\prime} \notin f^{-1}(y)$, we have $y \in H$. Hence there exists some V_{i} such that $V_{i} \subset H$. This implies that we have $f\left(x_{i}^{\prime}\right) \notin V_{i}$ for some i. On the other hand we have chosen the point x_{i}^{\prime} so that $x_{i}^{\prime} \in f^{-1}\left(V_{i}\right)$. This is a contradiction. Thus Lemma 1 is proved.

