2. Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. II

By Zenjiro Kuramochi
Mathematical Institute, Osaka University
(Comm. by K. Kunugi, m.J.A., Jan. 12, 1956)
Transfinite diameter. Let A be an m-closed subset of B. We define the transfinite diameter of A of order n as follows

$$
\left.\frac{1}{{ }_{A} D_{n}}=\frac{1}{2 \pi_{n} C_{2}}\left(\inf \underset{\substack{p_{s}, p_{t} \in A \\ s<t, s, t=1}}{n, n} \mid p_{s}, p_{t}\right)\right) .
$$

a) From the definition, it is clear, if $A_{1} \supseteq A_{2},{ }_{1} D_{n} \geqq{ }_{A_{2}} D_{n}$.
b) Let Ω be an ordinary neighbourhood containing A with a compact relative boundary. Consider $1 / \Omega D_{n}=\frac{1}{2 \pi}\left(\frac{1}{{ }_{n} C_{2}} \inf _{p_{s}, p_{t} \in \Omega} G\left(p_{s}, p_{t}\right)\right)$. Then every p_{s} is situated on $\partial \Omega$.
$\sum_{s<t} G\left(p_{s}, p_{t}\right)=\sum_{\substack{i, j \neq s \\ i \neq j}} G\left(p_{t}, p_{j}\right)+\sum_{\substack{i \neq s \\ i=1}}^{n} G\left(p_{s}, p_{i}\right)$. Then the sum of the first term does not depend on $p_{s}{ }^{i=1}$ and $\sum_{i \neq s}^{n} G\left(p_{s}, p_{i}\right)=U\left(p_{s}\right)$ is a superharmonic function of p_{s} for fixed $\left\{p_{i}\right\}$ in \bar{R}. We make $V_{M}\left(p_{i}\right)$ correspond to every point $p_{i}(i \neq s)$ such that $U\left(p_{s}\right) \geqq M$ in $\bigcup_{i} V_{M}\left(p_{i}\right)$, where $M \geqq$ $\max _{p_{s} \in \partial \Omega} U\left(p_{s}\right)$. Since $U\left(p_{s}\right)$ is m-lower semicontinuous, $U\left(p_{s}\right)$ attains its minimum m^{*} at z_{0} on an m-closed set Ω. We show that $z_{0} \in \partial \Omega$. If it were not so, assume that $U\left(z_{0}\right)=m^{*} \leqq m=\min _{p_{s} \in \partial \Omega} U\left(p_{s}\right)$ in Ω. Suppose $z_{0} \in B$, then by 3), $U\left(z_{0}\right)=\frac{1}{2 \pi} \int_{\partial V_{n}\left(z_{0}\right)} U(z) \frac{\partial G\left(z, z_{0}\right)}{\partial n} d s$, where n is so large enough that $V_{n}\left(z_{0}\right) \subset \Omega$. Then there exists at least one point $r(\in R)$ such that $U(r) \leqq m^{*} \leqq m$. $\quad r$ must be in $\Omega-\bigcup_{i} V_{m}\left(p_{i}\right)$. But since $U\left(p_{s}\right)$ is harmonic non constant in $\Omega-\bigcup_{i} V_{m}\left(p_{i}\right)$ and R is a null-boundary Riemann surface, $U\left(p_{s}\right)$ attains its minimum on $\partial \Omega$, by the minimum principle. Thus $U\left(z_{0}\right)>m$ in Ω. This is absurd, therefore every p_{i} is on $\partial \Omega$.

Let $\omega_{\Omega}(z)$ be the harmonic measure of Ω with respect to the domain $R-R_{0}-\Omega$ i.e. $\omega_{\Omega}(z)$ is harmonic in $R-\Omega-R_{0}$ and $\omega_{\Omega}(z)=0$ on $\partial R_{0}, \omega_{\Omega}(z)=1$ on $\partial \Omega$.

Since every p_{i} is on $\partial \Omega$, the following can be proved as in euclidean space,

$$
\lim _{n=\infty} \frac{1}{{ }_{\Omega} D_{n}}=2 \pi / \int_{\partial \Omega} \frac{\partial \omega_{\Omega}(z)}{\partial n} d s=W_{\Omega}
$$

