2. Evans's Theorem on Abstract Riemann Surfaces with Null-Boundaries. II

By Zenjiro KURAMOCHI Mathematical Institute, Osaka University (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1956)

Transfinite diameter. Let A be an m-closed subset of B. We define the transfinite diameter of A of order n as follows

$$\frac{1}{{}_{{}_{A}}\!D_n}\!=\!\frac{1}{2\pi_nC_2}\,\Big(\inf\sum_{p_s,p_t\in A\atop s< t,s,t-1}^{n,n}G(p_s,p_t)\Big)\!.$$

a) From the definition, it is clear, if $A_1 \supseteq A_2$, $_{A_1}D_n \ge _{A_2}D_n$.

b) Let \mathcal{Q} be an ordinary neighbourhood containing A with a compact relative boundary. Consider $1/_{\Omega}D_n = \frac{1}{2\pi} \left(\frac{1}{{}_nC_2} \inf_{p_s, p_t \in \Omega} G(p_s, p_t) \right)$. Then every p_s is situated on $\partial \mathcal{Q}$.

 $\sum_{s < t} G(p_s, p_t) = \sum_{\substack{i, j \neq s \\ i \neq j}} G(p_i, p_j) + \sum_{\substack{i \neq s \\ i = 1}}^{n} G(p_s, p_i).$ Then the sum of the first term does not depend on p_s and $\sum_{i=s}^{n} G(p_s, p_i) = U(p_s)$ is a superharmonic function of p_s for fixed $\{p_i\}$ in \overline{R} . We make $V_M(p_i)$ correspond to every point p_i $(i \neq s)$ such that $U(p_s) \ge M$ in $\bigcup V_M(p_i)$, where $M \ge M$ $\max U(p_s).$ Since $U(p_s)$ is m-lower semicontinuous, $U(p_s)$ attains $p_s \in \partial \Omega$ its minimum m^* at z_0 on an m-closed set Ω . We show that $z_0 \in \partial \Omega$. If it were not so, assume that $U(z_0) = m^* \leq m = \min_{p_g \in \partial \Omega} U(p_s)$ in Ω . Suppose $z_0 \in B$, then by 3), $U(z_0) = \frac{1}{2\pi} \int_{\partial V_n(z_0)} U(z) \frac{\partial G(z, z_0)}{\partial n} ds$, where n is so large enough that $V_n(z_0) \subset \Omega$. Then there exists at least one point $r(\epsilon R)$ such that $U(r) \leq m^* \leq m$. r must be in $\mathcal{Q} - \bigcup V_{\mathcal{M}}(p_i)$. But since $U(p_s)$ is harmonic non constant in $\mathcal{Q} - \bigcup V_{\mathcal{M}}(p_i)$ and R is a null-boundary Riemann surface, $U(p_s)$ attains its minimum on ∂Q_s by the minimum principle. Thus $U(z_0) > m$ in \mathcal{Q} . This is absurd, therefore every p_i is on ∂Q .

Let $\omega_{\Omega}(z)$ be the harmonic measure of \mathcal{Q} with respect to the domain $R - R_0 - \mathcal{Q}$ i.e. $\omega_{\Omega}(z)$ is harmonic in $R - \mathcal{Q} - R_0$ and $\omega_{\Omega}(z) = 0$ on ∂R_0 , $\omega_{\Omega}(z) = 1$ on $\partial \mathcal{Q}$.

Since every p_i is on ∂Q , the following can be proved as in euclidean space,

$$\lim_{n\to\infty}\frac{1}{{}_{\scriptscriptstyle \Omega}D_n}\!=\!2\pi\Big/\!\int_{\scriptscriptstyle \partial\Omega}\!\frac{\partial\omega_{\scriptscriptstyle \Omega}(z)}{\partial n}\,ds\!=\!W_{\scriptscriptstyle \Omega}.$$