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6. Furthermore we can improve Theorem 6, in he following
form:

Theorem 7. If
( 1 ) (f(+ )-f(x))d-o(lhl), 0

for a xed x, and

uniformly for all t, then the Fourier series of f(t) converges at x.
In other words the condition in Theorem 6

’l’f(x + u)-f(x)Idu- o(lhl)

is replaced by (1).
Proof. We put

1

/

z+ +o(.

Then by integration by
/" n eos nt t

and hence, on aeeoun of (), the absolute value of I is no reter
han

dt dty
where ()- ()d-o(t) as (0/).

In order o evaluate we now u (el.

/

where

r.= j oo(t +(->/n)
t +,/n-

j=

_
j

(t+ 2kr/n)-(t+ (2k- 1)r/n) sin nt dr,
t + 2kr/n

1
t +(2k-1)r/n

sin nt dt,


