20. Some Strong Summability of Fourier Series

By Masakiti Kinukawa
Natural Science Division, International Christian University, Mitaka, Tokyo

(Comm. by Z. Suetuna, m.J.A., Feb. 13, 1956)

1. The object of this paper is to find the condition of almost everywhere convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|s_{n}(x)-f(x)\right|^{k}, \tag{1.1}
\end{equation*}
$$

where $s_{n}(x)$ is the nth partial sum of the Fourier series of $f(x)$.
Concerning this problem, S. Izumi [2] has shown the following:
Let $p>1, p \geqq k>1$ and ε be any positive number. If

$$
\omega_{p}(t)=\sup _{|u| \leq t}\left\{\int_{-\pi}^{\pi}|f(x+u)-f(x)|^{p} d x\right\}^{1 / p} \leqq A t^{1 / k} /\left(\log \frac{1}{t}\right)^{(1+\varepsilon) / k},
$$

then the series (1.1) converges almost everywhere.
Related this theorem we shall prove some theorems.
Theorem 1. In order that the series (1.1) converges almost everywhere, one of the following conditions is sufficient:

$$
\begin{align*}
& \sum_{\lambda=1}^{\infty} \lambda^{r}\left[2^{\lambda / k} \omega_{p}\left(1 / 2^{2}\right)\right]^{p}<\infty, \text { for } 2 \geqq p>k>1, \gamma>p / k-1, \tag{1.2}\\
& \sum_{\lambda=1}^{\infty} 2^{\lambda}\left[\omega_{p}\left(1 / 2^{2}\right)\right]^{n}<\infty, \quad \text { for } 2>p=k>1, \tag{1.3}\\
& \sum_{\lambda=1}^{\infty} \lambda \cdot 2^{2}\left[\omega_{p}\left(1 / 2^{\lambda}\right)\right]^{p}<\infty, \text { for } p=k=2 . \tag{1.4}
\end{align*}
$$

2. Proof of Theorem 1. ${ }^{1)}$ We have

$$
\begin{aligned}
s_{n}(x)-f(x) & =\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \sin (n+1 / 2) t /(2 \sin t / 2) d t \\
& =\frac{1}{\pi} \int_{0}^{\pi} \varphi_{x}(t) \frac{\cos t / 2}{2} \sin t / 2 \sin n t d t+\frac{1}{\pi} \int_{0}^{\pi} \frac{1}{2} \varphi_{x}(t) \cos n t d t \\
& =P_{n}(x)+Q_{n}(x),
\end{aligned}
$$

say, where $\varphi_{x}(t)=\varphi(t)=f(x+t)+f(x-t)-2 f(x)$, and $P_{n}(x)$ and $Q_{n}(x)$ are the nth Fourier coefficients of the functions $\varphi_{x}(t) \cos t / 2 /(2 \sin t / 2)$ $=\varphi_{x}(t) p(t)$ and $\varphi_{x}(t) / 2$, respectively.
Let $1<p \leqq 2$ and p^{\prime} be its conjugate, then by the Hausdorff-Young inequality, we get ${ }^{2}$

$$
\left\{\sum_{n=1}^{\infty}\left|P_{n}(x) \sin n h\right|^{p}\right\}^{p / p} \leqq A\left\{\int_{0}^{\pi}|\varphi(t+h) p(t+h)-\varphi(t-h) p(t-h)|^{p} d t\right\}
$$

1) Cf. N. Matsuyama [3].
2) We denote by A an absolute constant, which is not necessarily the same in different occurrences.
