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1. Among the cellular decomposition problems of the classical
Lie groups (the special orthogonal group SO(%), the special unitary
group SU(n), and the symplectic group Sp(n)), a cellular decom-
position of SO(n) was given by J. H. C. Whitehead” and recently
that of SU(n) was given by the author.® In this paper, we shall
give a cellular decomposition of Sp(n). The details will appear in
the Journal of the Institute of Polytechnics, Osaka City University.

2. Let Q" be a vector space of dimension n over the field of
quaternion numbers, and e, be the element of @" whose ¢-th coordi-
nate is 1 and whose other coordinates are 0. We embed Q"' in Q"
as a subspace whose first coordinate is 0. Let S**~! be the unit
sphere in Q".

Let Sp(n) be the group of all symplectic linear transformations
of Q*. Put m(A)=Ae, for A e Sp(n). Then we have a fibre space
Sp(n)/Sp(n—1)=S*""! with projection =:Sp(n)—~> S*" 1.

3. Let E*~* be a closed cell consisting of all x=(x,, s, *, Tu),
where x,,@,,--+,2, are quaternion numbers such that |x.|>+ |2, |*+
ceo+|a,|*=1, and let E* be a closed cell consisting of all pure
imaginary quaternion numbers whose norms are <1.

Now, we shall define a map f: E** '=E*"*x E*— Sp(n) by

f(w’ q)z(sij+mzp§j>, 7;7 .721’ 2,---,m,
where o, =V'1— (/> +[@;]*+ - - - +|a,]*) and p=2V"1—Ig|((q—1'1—Iq").
It will be easily verified that f(x, q) is symplectic.

4. Define a map §: E* ' - S*"! by é=axf, then we have the

Lemma. § maps ™ '=E*"'—(E*" ') homeomorphically onto
S1—_e, and maps (E*" 1) to o point e,.

From this lemma, we can see that f maps £**~! homeomorphically
into Sp(k) = Sp(n) for n=k=>1.

5. For n=k,>k,>-+-->k;=>1, extend f to a map f:E* 'x
B4 tx oo X B*%i~t— Sp(n) by

W Yo+ -+, U =F W)L W)+ - - F Y-
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