92. On the Cells of Symplectic Groups

By Ichiro Yokota
Osaka City University, Osaka
(Comm. by K. Kunugi, m.J.A., June 12, 1956)

1. Among the cellular decomposition problems of the classical Lie groups (the special orthogonal group $S O(n)$, the special unitary group $S U(n)$, and the symplectic group $S p(n)$), a cellular decomposition of $S O(n)$ was given by J. H. C. Whitehead ${ }^{1)}$ and recently that of $S U(n)$ was given by the author. ${ }^{2)}$ In this paper, we shall give a cellular decomposition of $S p(n)$. The details will appear in the Journal of the Institute of Polytechnics, Osaka City University.
2. Let Q^{n} be a vector space of dimension n over the field of quaternion numbers, and e_{i} be the element of Q^{n} whose i-th coordinate is 1 and whose other coordinates are 0 . We embed Q^{n-1} in Q^{n} as a subspace whose first coordinate is 0 . Let $S^{4 n-1}$ be the unit sphere in Q^{n}.

Let $S p(n)$ be the group of all symplectic linear transformations of Q^{n}. Put $\pi(A)=A e_{1}$ for $A \in S p(n)$. Then we have a fibre space $S p(n) / S p(n-1)=S^{4 n-1}$ with projection $\pi: S p(n) \rightarrow S^{4 n-1}$.
3. Let $E^{4 n-4}$ be a closed cell consisting of all $x=\left(x_{2}, x_{3}, \cdots, x_{n}\right)$, where $x_{2}, x_{3}, \cdots, x_{n}$ are quaternion numbers such that $\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+$ $\cdots+\left|x_{n}\right|^{2}=1$, and let E^{3} be a closed cell consisting of all pure imaginary quaternion numbers whose norms are $\leqq 1$.

Now, we shall define a map $f: E^{4 n-1}=E^{4 n-4} \times E^{3} \rightarrow S p(n)$ by

$$
f(x, q)=\left(\delta_{i j}+x_{i} p \bar{x}_{j}\right), \quad i, j=1,2, \cdots, n,
$$

where $x_{1}=\sqrt{1-\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}\right)}$ and $p=2 \sqrt{1-|q|^{2}}\left(q-\sqrt{1-|q|^{2}}\right)$. It will be easily verified that $f(x, q)$ is symplectic.
4. Define a map $\xi: E^{4 n-1} \rightarrow S^{4 n-1}$ by $\xi=\pi f$, then we have the

Lemma. ξ maps $\varepsilon^{4 n-1}=E^{4 n-1}-\left(E^{4 n-1}\right)^{\bullet}$ homeomorphically onto $S^{4 n-1}-e_{1}$ and maps ($E^{4 n-1}$ • to a point e_{1}.

From this lemma, we can see that f maps $\mathcal{E}^{4 k-1}$ homeomorphically into $S p(k) \subset S p(n)$ for $n \geqq k \geqq 1$.
5. For $n \geqq k_{1}>k_{2}>\cdots>k_{j} \geqq 1$, extend f to a map $f: E^{4 k_{1}-1} \times$ $E^{4 k_{2}-1} \times \cdots \times E^{4 k_{j}-1} \rightarrow S p(n)$ by

$$
\bar{f}\left(y_{1}, y_{2}, \cdots, y_{j}\right)=f\left(y_{1}\right) f\left(y_{2}\right) \cdots f\left(y_{j}\right)
$$

[^0]
[^0]: 1) J. H. C. Whitehead: On the groups $\pi_{r}\left(V_{n, m}\right)$ and sphere bundles, Proc. London Math. Soc., 48 (1945).
 2) I. Yokota: On the cell structures of $S U(n)$ and $S p(n)$, Proc. Japan Acad., 31 (1955). The results given therein are incorrect for $S p(n)$. The present paper is a correction for the part of $S p(n)$.
