129. Contributions to the Theory of Semi-groups. V

By Kiyoshi Iséki Kobe University

(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1956)

S. Schwarz [3] considered a disjoint conjugate class decomposition of a semi-group. He proved any finite commutative semi-group has such a decomposition and any character on it takes the same value on each conjugate class. The present author [1, (IV)] proved that, in any commutative periodic semi-group S, there is a character $\chi(x)$ of S such that $\chi(a) \neq \chi(b)$ if a, b are two elements of distinct conjugate classes.

Let S be a strongly reversible (see G. Thierrin [4]) periodic semi-group, and let $G^{(a)}$ be the maximal subgroup of $K^{(a)}$ for an idempotent e_a (see K. Iséki [1, (I)]). Then, following S. Schwarz [3], for a of $G^{(a)}$, the set T_a of all elements x of $K^{(a)}$ satisfying $xe_a=a$ is called a *conjugate class* of S. By Theorem 2 of K. Iséki [1, (I), p. 174], the semi-group S is the set-sum of disjoint conjugate classes T_a .

In any strongly reversible compact semi-group¹⁾ S, if $G^{(\alpha)}$ is the maximal subgroup of $K^{(\alpha)}$ containing an idempotent e_a , S is the setsum of $K^{(\alpha)}$ (see K. Iséki [2]) and $K^{(\alpha)}e_a=e_{\alpha}K^{(\alpha)}=G^{(\alpha)}$. Therefore we can define conjugate classes of S, and S is the set-sum of disjoint conjugate classes T_a . Hence if a given semi-group is compact commutative, it is decomposed into disjoint conjugate classes T_a .

Now, let S be a strongly reversible periodic homogroup (see G. Thierrin [5]), then S has only one smallest idempotent e (see K. Iséki [1, (II)]).

Let χ be a character of *S*, i.e. a homomorphism into the multiplicative group of complex numbers of absolute value one. Let $G^{(e)}$ be a maximal group relative to the smallest idempotent *e*. From $T_a e_a = a \in G^{(a)}$ and $e_a e = e = e e_a$, we have

$$T_a e = T_a e_a e = a e_a$$

Hence

$$\chi(T_a) = \chi(T_a e) = \chi(ae).$$

Therefore we have the following

Theorem 1. In a strongly reversible periodic homogroup S, any character of S takes the same value on each conjugate class. Further, we have

Theorem 2. Any character of a compact homogroup takes the same

¹⁾ For topological semi-groups, see A.D. Wallace [6] or [7].