123. Fourier Series. II. Order of Partial Sums

By Masako Satô

(Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1956)

1. Introduction. Let f(t) be an integrable function with period 2π and its Fourier series be

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt).$$

By $s_n(x)$ we denote the *n*th partial sum of the Fourier series. We put as usual $\varphi_x(u) = f(x+u) + f(x-u)$.

H. Lebesgue [1] has proved the following

Theorem 1. If, for a fixed x,

$$(1) \qquad \qquad \int_{0}^{t} |\varphi_{x}(u)| du = o(t)$$

as $t \rightarrow 0$, then

 $(2) s_n(x) = o(\log n).$

S. Izumi [2] proved

Theorem 2. The conditions

(3)
$$\int_{0}^{t} \varphi_{x}(u) du = o(t),$$
 (4) $\int_{0}^{t} |\varphi_{x}(u)| du = O(t)$ (t \rightarrow 0)

do not imply (2) in general.

Then there arises the problem: What condition with (3) does (2) imply? As an answer of this problem we prove the following

Theorem 3. If (3) holds and

(5)
$$\int_{0}^{t} (f(\xi+u) - f(\xi-u)) \, du = o(t) \quad (t \to 0)$$

uniformly in ξ in a neighbourhood of x, then (2) holds.

This is proved by the same idea as in the proof of Theorem 7 in [4].

On the other hand O. Szász [3] proved that: Theorem 4. If

$$(6) \qquad \qquad \int_0^t |\varphi_x(u)| du = o\left(t / \log \frac{1}{t}\right) \qquad (t \to 0),$$

then

$$(7) s_n(x) = o(\log \log n)$$

Analogously as Theorems 2 and 3, we prove the following theorems. Theorem 5. The conditions

(8)
$$\int_0^t \varphi_x(u) \, du = o\left(t / \log \frac{1}{t}\right),$$