20. Analytic Functions in the Neighbourhood of the Ideal Boundary

By Zenjiro KURAMOCHI

Mathematical Institute, Hokkaidô University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

Let R be a Riemann surface with null-boundary and let $\{R_n\}$ be its exhaustion with compact relative boundary. We proved the following

Theorem 1.¹⁾ Let R' be a subsurface of R with compact relative boundary. Let f(z) be a bounded analytic function on R'. Then f(z)has a limit as z tends to an ideal boundary component of R'.

We extend this theorem to more general class of Riemann surfaces. Let R be a Riemann surface with positive boundary and let R' be a subsurface of R with compact relative boundary Γ . We introduce two classes of Riemann surfaces.

There exists no non-constant one valued bounded (Dirichlet bounded) harmonic function U(z) on R' such that U(z)=0 on Γ , the period of the conjugate function of U(z) vanishes along every dividing cut of R. We say $R \in O'_{AB}$ and $\in O'_{AD}$ respectively. O'_{AB} and O'_{AD} are the extension of the classes of O_{AB} and O_{AD} of the Riemann surface of finite genus. We see easily that the property $\in O'_{AB}$ ($\in O'_{AD}$) is the one depending only on the ideal boundary.

Theorem 2. Suppose a bounded (Dirichlet bounded) analytic function on $R' \in O'_{AB}(O'_{AD})$. Then f(z) has a limit as z tends to a boundary component of R'.

To prove Theorem 2 we make some preparations.

Let R be a Riemann surface with positive boundary and let $\{R_n\}$ $(n=0,1,2,\cdots)$ be its exhaustion with compact relative boundary $\{\partial R_n\}$. Let $N(z,p): p \in R$ be a positive harmonic function in $R-R_0$ such that N(z,p)=0 on ∂R_0 , N(z,p) has a logarithmic singularity at p and N(z,p) has the minimal *-Dirichlet integral.²⁾ Let $\{p_i\}$ be a sequence tending to the ideal boundary of R such that $\{N(z,p_i)\}$ converges uniformly in every compact domain of R. We say that $\{p_i\}$ is a fundamental sequence determining an ideal boundary point and we make $\lim_{i\to\infty} N(z,p_i)$ correspond to this ideal boundary point. Denote by B the ideal boundary point. The distance between points p_1 and p_2 of $R-R_0+B$ is defined by

1) Z. Kuramochi: Potential theory and its applications, I, Osaka Math., 3 (1951).

²⁾ Z. Kuramochi: Mass distributions on the ideal boundaries of abstract Riemann surfaces, II, Osaka Math., 8 (1956).