17. On Hardy and Littlewood's Theorem

By Kenji YANO

Department of Mathematics, Nara Women's University, Nara, Japan (Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1957)

1. Let f(x) be an *L*-integrable function with period 2π , and its Fourier series be

(1)
$$\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

A. Zygmund [1] has shown the following

Theorem Z. If f(x) belongs to Lip α where $0 < \alpha \leq 1$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

Later, Hardy and Littlewood [2] showed the following

Theorem H., L. If f(x) belongs to $Lip(\alpha, p)$ where $0 < \alpha \leq 1$ and $\alpha p > 1$, *i.e.*

$$\left(\int_{0}^{2\pi} |f(x+h)-f(x)|^{p} dx\right)^{1/p} = O(|h|^{a})$$

as $h \rightarrow 0$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

In this paper we shall improve the above theorem as follows:

Theorem. If f(x) is continuous in $(0, 2\pi)$, and belongs to Lip $(\alpha, 1/\alpha)$ where $0 < \alpha \leq 1$, i.e.

$$\int_{0}^{2\pi} |f(x+h) - f(x)|^{1/a} dx = O(h)$$

as $h \to 0$, then the series (1) is uniformly summable $(C, -\alpha + \delta)$ to f(x) for every $\delta > 0$.

2. The $proof^{(*)}$ of our theorem is as follows. Let

$$\varphi(t) = \varphi_x(t) = f(x+t) + f(x-t) - 2f(x),$$

then we have

(2) $\varphi(t) \rightarrow 0$ as $t \rightarrow 0$ uniformly in $0 \leq x \leq 2\pi$, since f is continuous.

We denote the *n*-th (C, γ) mean of the series (1) by $\sigma_n^{\tau}(x)$, then

$$\sigma_n^{-a}(x) - f(x) = \frac{1}{\pi} \int_0^{\pi} \varphi(t) K_n^{-a}(t) dt$$
$$= \frac{1}{\pi} \int_0^{K/n} + \frac{1}{\pi} \int_{K/n}^{\pi} = I_1 + I_2$$

say, where $K_n^{\mathsf{T}}(t)$ is the *n*-th (C, γ) Féjer kernel and

$$|K_n^{-\alpha}(t)| \leq \frac{n}{1-\alpha} + \frac{1}{2} \quad \text{for } 0 \leq t \leq \pi,$$

^{*)} The method of this proof has been suggested to me by Prof. G. Sunouchi.