## 15. Fourier Series. XII. Bernstein Polynomials

By Shin-ichi IZUMI, Masako SATÔ, and Saburô UCHIYAMA

Department of Mathematics, Hokkaidô University, Sapporo, Japan (Comm. by Z. SUETUNA, M.J.A., Feb. 12, 1957)

1. If f(t) is integrable in the closed interval [0, 1], then the generalized Bernstein polynomials of f(t) are defined as

(1) 
$$P_n(x) = P_n(x, f) = \sum_{\nu=0}^n (n+1)p_{n,\nu}(x) \int_{\nu/(n+1)}^{(\nu+1)/(n+1)} f(t)dt \quad (n=0, 1, 2, \cdots),$$

where

(2) 
$$p_{n,\nu}(x) = p_{n,\nu} = {n \choose \nu} x^{\nu} (1-x)^{n-\nu}.$$

It is known that  $P_n(x, f)$  tends to f(x) almost everywhere as  $n \to \infty$ and carries many properties of the Fejér mean of the Fourier series of f(t) [1]. From this point of view P. L. Butzer [2] considered the polynomials, corresponding to the partial sums of the Fourier series of f(t) such that

(3)  $Q_n(x) = Q_n(x, f) = (n+1)P_n(x, f) - nP_{n-1}(x, f)$   $(n=0, 1, 2, \dots)$ , and established some fundamental theorems concerning them.

Among others he proved the following

**Theorem 1.** If f(t) is bounded in the interval (0, 1) and its second derivative exists at t=x, then  $Q_n(x, f)$  tends to f(x) as  $n \to \infty$ .

Further he raised the question:

Does there exist an integrable function f(t) such that the  $Q_n(x, f)$  diverges almost everywhere in the interval (0, 1)?

In the present note we wish to prove the following theorems:

**Theorem 2.** If the derived Fourier series of f(t) converges absolutely, then  $Q_n(x, f)$  converges to f(x) everywhere.

**Theorem 3.** There is a continuous function f(t) with absolutely convergent Fourier series such that  $Q_n(x, f)$  diverges almost everywhere.

Clearly Theorem 3 is a stronger solution of the problem of Butzer's. We note that, as will be found incidentally in § 3, our Theorem 2 can not hold in general unless the derived Fourier series of f(t) is absolutely convergent.

2. Proof of Theorem 2. Without loss of generality we may suppose that

$$f(t)$$
 ~  $\sum_{\lambda=1}^{\infty} a_{\lambda} e^{2\pi i \lambda t}$ 

Then

 $(4) \qquad \qquad Q_n(x,f) - f(x) = \sum a_{\lambda} [Q_n(x,e^{2\pi i\lambda t}) - e^{2\pi i\lambda x}]$