114. On B-covers and the Notion of Independence in Lattices

By Yataro Matsushima
Gunma University, Maebashi
(Comm. by K. Kunugi, m.J.A., Oct. 12, 1957)

Introduction. In [3], L. M. Kelley has introduced the concept of B-covers as metric-between in a normed lattice. We have extended this notion to the case of general lattices in [4] and studied the geometries in lattices by means of B-covers and B^{*}-covers in [5]. In the first section of this paper we shall show that the relation "relative modularity" or "relative independence" which is derived from Wilcox [1] has a close connection with the J-cover or the $C J$ cover which is a part of the B-cover in lattices. In the second section we shall consider the relations between the B-covers and independent sets in lattices.

For any two elements a, b of a lattice L, we shall define as follows. $J(a, b)=\{x \mid(a \frown x) \smile(b \frown x)=x, x \in L\}, C J(a, b)=\{x \mid(a \smile x) \frown(b \smile x)=x$, $x \in L\}$. $J(a, b)$ is called the J-cover of a and b, and if $x \in J(a, b)$, then we shall write $J(a x b)$. Similarly we shall define $C J$-cover and $C J(a x b)$.
$B(a, b)=J(a, b) \frown C J(a, b)$ is called the B-cover of a and b and we shall write $a x b$ when $x \in B(a, b)$ (cf. [4, 5]).

1. Relative modular pairs and J-covers ($C J$-covers). Following L. R. Wilcox [1], (a, b) is called a modular pair when $x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$, and in this case we write $(a, b) M$. In [5] we defined a relative modular pair $(a, b) M^{*}$ to be a pair (a, b) such that $a \frown b \leqq x \leqq b$ implies $(x \smile a) \frown b=x \smile(a \frown b)$.
B-covers treat "between" in lattices (cf. [4, 5]), while J-covers and $C J$-covers may be considered as describing "semi-between" in lattices.
In the following L is always assumed to be a lattice.
Lemma 1.1. The following statements are equivalent in case $b^{\prime} \leqq b$:
(a) $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b$. $\quad\left(\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b^{\prime}\right)$.
(b) $J\left(a b b^{\prime}\right)\left(C J\left(a b^{\prime} b\right)\right)$.

Proof. If $\left(b^{\prime} \smile a\right) \frown b=b^{\prime} \smile(a \frown b)=b$, then we have $(a \frown b) \smile\left(b \frown b^{\prime}\right)$ $=(a \frown b) \smile b^{\prime}=b$, that is $J\left(a b b^{\prime}\right)$. Conversely if $J\left(a b b^{\prime}\right)$, then we have $b=(a \frown b) \smile\left(b \frown b^{\prime}\right) \leqq b \frown\left(a \smile b^{\prime}\right) \leqq b$, and hence we have $\left(b^{\prime} \smile a\right) \frown b=b=b^{\prime}$ $\smile(a \frown b)$. Similarly we can treat the other case.

Theorem 1.1. If $J\left(a b b^{\prime}\right)\left(r e s p . C J\left(a b^{\prime} b\right)\right)$ holds for any b^{\prime} with $b^{\prime} \leqq b$ then we have $(a, b) M$.

