111. A Note on Some Topological Spaces

By Shouro KASAHARA Kobe University (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

This short note has two purposes: one of them is to determine a topological space treated in [2], that is, it will be shown below that a Hausdorff space satisfying one of the conditions listed in Theorem 2 of [2] is nothing more than a finite set; and the other is to point out a more fundamental property of weakly compact spaces.^{*)}

Let $\mathfrak{S} = \{O_a\}_{a \in A}$ be a family of subsets of a topological space E. We say that \mathfrak{S} is *point finite* if each point of E belongs at most to a finite number of the members of \mathfrak{S} . The family \mathfrak{S} is said to be locally finite if each point of E possesses a neighbourhood which intersects at most finitely many members of \mathfrak{S} ; and \mathfrak{S} is star finite if each member of \mathfrak{S} intersects at most finitely many members of \mathfrak{S} . Moreover, \mathfrak{S} is termed weakly locally finite if \mathfrak{S} is locally finite as a family of subsets of the subspace $\bigcup_{\alpha \in A} O_{\alpha}$ of E (i.e. if each point of $\bigcup_{\alpha \in A} O_{\alpha}$ possesses a neighbourhood which intersects finitely many members of \mathfrak{S}). If the set A of indices is a finite set, the family \mathfrak{S} is Obviously, a star finite family is weakly locally finite, called *finite*. a locally finite family is weakly locally finite, and a weakly locally finite family is point finite.

THEOREM 1. The following conditions on a Hausdorff space E are equivalent:

- (1) Every point finite open covering of E is finite.
- (2) Every point finite family of open sets of E is finite.
- (3) Every weakly locally finite family of open sets of E is finite.
- (4) Every star finite family of open sets of E is finite.
- (5) Every family of pairwise disjoint open sets of E is finite.
- (6) E is a finite set.

Proof. It will suffice to prove that (5) implies (6). To prove this, it is sufficient to show that each point of E is open. Suppose that there exists a point $x \in E$ which is not open. Then, if V_0 is a neighbourhood of x, we can find a point $x_1 \in V_0$ distinct from x, and then we can choose disjoint open sets V_1 and O_1 such that $x \in V_1$, $x \in O_1$ and $V_1 \subseteq V_0$, $O_1 \subseteq V_0$. Thus, by induction, it is easy to construct a sequence $\{V_n\}$ of neighbourhoods of x and a sequence $\{O_n\}$ of open

^{*)} For the definition of weakly compact space (espace faiblement compact), see [3 or 4].