108. On Topological Properties of W* algebras

By Shôichirô Sakai

Mathematical Institute, Tôhoku University, Sendai, Japan (Comm. by K. KUNUGI, M.J.A., Oct. 12, 1957)

1. In this paper, we shall show some topological properties of W^* -algebras and their applications. Main assertions are as follows: (1) Any closed invariant subspace of the adjoint space of C^* -algebras is algebraically spanned by positive functionals belonging to itself [Theorem 1]. (2) The direct product $M_1 \otimes M_2$ of W^* -algebras M_1 and M_2 is purely infinite, whenever either M_1 or M_2 is purely infinite [Theorem 2]. This second assertion is the positive answer for a problem of J. Dixmier [4], and we can assert that all questions concerning the "type" of the direct product of W^* -algebras are now solved.

2. Let A be a C*-algebra, \widetilde{A} the adjoint space of A. A subspace V of A is said invariant, if $f \in V$ means fa, $bf \in V$ for $a, b \in A$, where $\langle x, fa \rangle = \langle xa, f \rangle$ and $\langle x, bf \rangle = \langle bx, f \rangle$, where $\langle x, f \rangle$ is the value of f at $x(\in A)$.

Theorem 1.¹⁾ Any closed invariant subspace of \widetilde{A} is algebraically spanned by positive functionals belonging to itself.

Proof. Let $\widetilde{\widetilde{A}}$ be the second adjoint space of A, then by Shermann's theorem (cf. [10]) $\widetilde{\widetilde{A}}$ is considered a W^* -algebra and A is a C^* -sub-algebra of $\widetilde{\widetilde{A}}$, when it is canonically imbedded into $\widetilde{\widetilde{A}}$ as a Banach space.

Let V^0 be the polar of V in $\widetilde{\widetilde{A}}$, that is, $V^0 = \{a \mid |\langle a, f \rangle| \leq 1$, $a \in \widetilde{\widetilde{A}}$ and all $f \in V\}$, then it is a $\sigma(\widetilde{\widetilde{A}}, \widetilde{A})$ -closed ideal of A, for $|\langle bac, V \rangle| = |\langle a, b V c \rangle| = |\langle a, V \rangle| \leq 1$ for $a \in V^0$ and $b, c \in A$; hence $bac \in V^0$. Since A is $\sigma(\widetilde{\widetilde{A}}, \widetilde{A})$ -dense in $\widetilde{\widetilde{A}}$ and V^0 is $\sigma(\widetilde{\widetilde{A}}, \widetilde{A})$ -closed, this means $bac \in V^0$ for $b, c \in \widetilde{\widetilde{A}}$, so that V^0 is an ideal.

On the other hand, by a classical theorem of Banach spaces, the adjoint space of V is considered the quotient space $\widetilde{\widetilde{A}}/V^{\circ}$. Since $\widetilde{\widetilde{A}}/V^{\circ}$ is a C*-algebra, by the author's theorem [8, 9] it is a W*-algebra and $\sigma(\widetilde{\widetilde{A}}/V^{\circ}, V)$ is the σ -weak topology of $\widetilde{\widetilde{A}}/V^{\circ}$, that is, composed of all σ -weakly continuous linear functionals on $\widetilde{\widetilde{A}}/V^{\circ}$; hence by Dixmier's theorem [3] V is algebraically spanned by positive functionals belonging to itself. Moreover, since the positiveness of elements of V on $\widetilde{\widetilde{A}}/V^{\circ}$ means the positiveness on A, this completes the proof.

Now, let ν be a measure on a measure space and $L^{1}(\nu)$ and $L^{\infty}(\nu)$