104. On Homomorphisms of the Ring of Continuous Functions onto the Real Numbers

By Tadashi Ishii

Department of Mathematics, Ehime University, Japan (Comm. by Z. SUETUNA, M.J.A., Oct. 12, 1957)

Let X be a C^{∞} -manifold and F(X) be the ring of all the C^{∞} functions on X, or let X be a Q-space¹⁾ and C(X) be the ring of all the real-valued continuous functions on X. Then for a non-trivial homomorphism ϕ (i.e. $\phi(f) \equiv 0$) of the function ring F(X) or C(X)into the real number field R, there exists one and only one point pof X such that $\phi(f) = f(p)$ for any f of the respective function ring. Hence it follows that C^{∞} -manifolds X and Y are differentiably homeomorphic if F(X) and F(Y) are isomorphic,²⁾ and that Q-spaces X and Y are homeomorphic if C(X) and C(Y) are isomorphic.³⁾ In this paper we shall study the generalizations of these results. For brevity we use the word 'homomorphism' in place of the word 'non-trivial homomorphism'.

Let X be a completely regular space and let C(X, R) be the ring of all the real-valued continuous functions on X. We denote by \mathfrak{S} a subring of C(X, R) satisfying the following conditions:

(1) $R \subset \mathfrak{C}$,

(2) for a closed set F of X and a point $p \notin F$, there exists a function f of \mathfrak{C} such that $f(p) > \sup_{x \in F} f(x)$,

(3) if f(x) > a > 0 and $f(x) \in \mathbb{S}$, then $f^{-1}(x) \in \mathbb{S}$. The conditions (2) and (3) are weaker than the following conditions (2') and (3') respectively:

(2') for a closed set F of X and a point $p \notin F$, there exists a function f of \mathfrak{S} such that $0 \leq f(x) \leq 1$, f(p) = 1, and f(x) = 0 if $x \in F$, (3') if f(x) > 0 and $f(x) \in \mathfrak{S}$, then $f^{-1}(x) \in \mathfrak{S}$.

It is obvious that the conditions (1), (2') and (3') are all fulfilled, if $\mathfrak{E}=F(X)$ or C(X).

We now define a uniform structure gX of X by the following uniform neighborhoods:

 $U_{f_1,\dots,f_n;\varepsilon}(x) = \{y \mid |f_i(y) - f_i(x)| < \varepsilon, i = 1, 2, \dots, n\}, \text{ where } f_i \in \mathfrak{S}$ $(i=1, 2, \dots, n) \text{ and } \varepsilon \text{ is an arbitrary positive number. Then it is easily seen that <math>gX$ agrees with the topology of X by virtue of (2).

¹⁾ By a C^{∞} -manifold we mean a separable C^{∞} -manifold. For the definition of a Q-space see [3, 4, 7].

²⁾ See [1].

³⁾ See [3, Theorem 57].