127. A Remark on Pseudo-compact Spaces

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1957)

Following Prof. E. Hewitt, a completely regular space is said to be *pseudo-compact*, if every real continuous function on it is bounded. The present writer [4, Corollary 2] proved a theorem closely related to some of results by R. G. Bartle [1] and T. Isiwata [5]. In this Note, we shall show that it is a characterisation of pseudo-compact spaces. Let $\beta(S)$ be the Čech compactification of a completely regular space S, and let f(x) be a bounded continuous function. Let $f^*(x)$ be the unique extension of f(x) on $\beta(S)$. Then we have the following

Theorem. Let S be a completely regular space, then the following statements are equivalent:

(1) S is pseudo-compact.

(2) For every sequence of bounded continuous functions $f_n(x)$ $(n=1, 2, \cdots)$ and f(x) such that $f_n(x)$ converges to f(x) pointwisely, $f_n^*(x)$ is convergent to $f^*(x)$ on $\beta(S)$.

(3) For every sequence of bounded continuous functions $f_n(x)$ such that $f_n(x) \downarrow 0$, we have $f_n^*(x) \rightarrow 0$ on $\beta(S)$.

Proof. $(1) \rightarrow (2)$ follows from Corollary 2 stated before. Since S is dense in $\beta(S)$, (2) implies (3).

To prove $(3) \rightarrow (1)$, it is sufficient to show that the Dini theorem on monotone sequence of bounded continuous functions holds true on S. I. Glicksberg [2], J. Mařik [6] and the present writer [3] have proved that the property is a characterisation of the pseudo-compactness. Let $f_n(x)$ be a sequence of bounded continuous functions such that $f_n(x) \downarrow 0$, then $f_1(x) \ge f_2(x) \ge \cdots$ implies $f_1^*(x) \ge f_2^*(x) \ge \cdots$ on $\beta(S)$, and by the condition (3), we have $f_n^*(x) \downarrow 0$. Since the Dini theorem holds true on $\beta(S)$, $f_n^*(x)$ is uniformly convergent to 0 on $\beta(S)$. Therefore $f_n(x)$ is uniformly convergent to 0 on S. This shows $(3) \rightarrow (1)$.

References

- R. G. Bartle: On compactness in functional analysis, Trans. Am. Math. Soc., 79, 35-57 (1955).
- [2] I. Glicksberg: The representation of functionals by integrals, Duke Math. Jour., 19, 253-261 (1952).
- [3] K. Iséki: A characterisation of pseudo-compact spaces, Proc. Japan Acad., 33, 320-322 (1957).
- [4] K. Iséki: Pseudo-compactness and μ-convergence, Proc. Japan Acad., 33, 368– 371 (1957).