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125. An Example of Kernel of Non.Carleman Type

By Takashi KASU(A

(Comm. by K, KUNUC,I, M.b.A., Nov. 12, 1957)

In this note, we construct an example of symmetric measurable
kernel of non-Carleman type which determines a bounded self-a,djoint
operator in L2[0, 1 ) and has some additional properties stated in the
following.

More precisely we construct a function S(x, y) on 0, 1 0, 1
with the following properties (A), (B), (C), (D), (E), (F)"
(A.) S(x, y)O, S(x, y)-S(y, x) on 0, 1 x 0, 1.
(B) S(x, y) is a Bair. e’s function of the 1st class on 0, 1 X 0, 1.
(C) If f(y) eLO, 1, S(x, y)f(y) LI[_OyI2 for every x 0, 1
--Nx where N is a null set depending on f(y).

(D) S(x, y)f(y)dyeL2[O, 1 if f(y)eL2[O, 1.

(E) The operation H defined for all f(y) e L2O, 1 by

f(y) --, ;1S(x, y)f(y)dyH"

is a bounded self-adjoint operator in L2[O, 1.
But
(F) S(x, y)L2[O_yI for any xe 0, 1.

1. Kernel K(x, y). We define three functions R(n), P(n), Q(n)
of integer n:>0 by

R(0)-0, R(n)--

_
s for n_>__l

8=1

P(n)--R(n)-- [R(n) for n:>0

Q(0)-0, Q(n)-6r- s-2 for n:>l.

Then since O<R(n)--R(n--1)l for nl, for n:>l [R(n)--
JR(n-- 1) or [R(n) [R(n-- 1) + 1 and if [R(n) JR(n-- 1), then
O_P(n--1)<P(n)<l and if [R(n)-[R(n--1)+l, then OP(n)
P(n-- 1) < 1. Also it is well known that Q(n) --, 1 (n--> o).

We define a function K(x, y) on [0, 1 X [0, 1 in the following
way.

For (x, y) such that 0xl Q(n-1)y<Q(n) (n:>l), we put

1) M[0, 1], L[0, 1], L2[0, 1] are the classes of bounded measurable, integrable,
square integrable functions on the closed interval [0, 1] respectively.

2) f(x, y)eL[O<_xl] or f(x, y)e L[0_---<yl] means that f(x, y) as a function
of x or y belongs to L2[0, 1] for a particular value of y or x. Similarly for other
function classes defined in 1).

3) [a] is the greatest integer not greater than the real number a.


