125. An Example of Kernel of Non-Carleman Type

By Takashi Kasuga

(Comm. by K. Kunugi, m.J.A., Nov. 12, 1957)
In this note, we construct an example of symmetric measurable kernel of non-Carleman type which determines a bounded self-adjoint operator in $L^{2}[0,1]^{1)}$ and has some additional properties stated in the following.

More precisely we construct a function $S(x, y)$ on $[0,1] \times[0,1]$ with the following properties (A), (B), (C), (D), (E), (F):
(A.) $S(x, y) \geqq 0, S(x, y)=S(y, x)$ on $[0,1] \times[0,1]$.
(B) $S(x, y)$ is a Baire's function of the 1st class on $[0,1] \times[0,1]$.
(C) If $f(y) \in L^{2}[0,1], S(x, y) f(y) \in L^{1}[0 \leqq y \leqq 1]^{2)}$ for every $x \in[0,1]$
$-N_{f}$ where N_{f} is a null set depending on $f(y)$.
(D) $\int_{0}^{1} S(x, y) f(y) d y \in L^{2}[0,1]$ if $f(y) \in L^{2}[0,1]$.
(E) The operation H defined for all $f(y) \in L^{2}[0,1]$ by

$$
H: f(y) \rightarrow \int_{0}^{1} S(x, y) f(y) d y
$$

is a bounded self-adjoint operator in $L^{2}[0,1]$.
But
(F) $\quad S(x, y) \notin L^{2}[0 \leqq y \leqq 1]^{2)}$ for any $x \in[0,1]$.
§1. Kernel $K(x, y)$. We define three functions $R(n), P(n), Q(n)$ of integer $n \geqq 0$ by

$$
\begin{array}{cc}
R(0)=0, R(n)=\sum_{s=1}^{n} s^{-1} & \text { for } n \geqq 1 \\
P(n)=R(n)-[R(n)]^{3)} & \text { for } n \geqq 0 \\
Q(0)=0, Q(n)=6 \pi^{-2} \sum_{s=1}^{n} s^{-2} & \text { for } n \geqq 1 .
\end{array}
$$

Then since $0<R(n)-R(n-1) \leqq 1$ for $n \geqq 1$, for $n \geqq 1[R(n)]=$ $[R(n-1)]$ or $[R(n)]=[R(n-1)]+1$ and if $[R(n)]=[R(n-1)]$, then $0 \leqq P(n-1)<P(n)<1$ and if $[R(n)]=[R(n-1)]+1$, then $0 \leqq P(n) \leqq$ $P(n-1)<1$. Also it is well known that $Q(n) \rightarrow 1(n \rightarrow \infty)$.

We define a function $K(x, y)$ on $[0,1] \times[0,1]$ in the following way.

For (x, y) such that $0 \leqq x \leqq 1 \quad Q(n-1) \leqq y<Q(n)(n \geqq 1)$, we put

[^0]$3)[a]$ is the greatest integer not greater than the real number a.

[^0]: 1) $M[0,1], L[0,1], L^{2}[0,1]$ are the classes of bounded measurable, integrable, square integrable functions on the closed interval $[0,1]$ respectively.
 2) $f(x, y) \in L^{2}[0 \leqq x \leqq 1]$ or $f(x, y) \in L^{2}[0 \leqq y \leqq 1]$ means that $f(x, y)$ as a function of x or y belongs to $L^{2}[0,1]$ for a particular value of y or x. Similarly for other function classes defined in 1).
