No. 10] 603

An Extension Theorem

By Hidegorô NAKANO

(Comm. by K. Kunugi, M.J.A., Dec. 12, 1957)

In an earlier paper [3], we obtained an extension theorem ([3], Theorem 2.27; [4, § 79 Theorem 27]) about linear functionals on modulared linear spaces. From the proof of this theorem we conclude immediately:

Extension Theorem. Let R be a linear space and m a functional on R subject to

1)
$$0 \le m(x) \le +\infty$$
 for every $x \in R$,

2)
$$m(\lambda x + \mu y) \leq \lambda m(x) + \mu m(y)$$
 for $\lambda + \mu = 1$; $\lambda, \mu \geq 0$.

For a linear manifold A of R, a linear functional φ on A and a real number γ , if

$$\varphi(x) \leq \gamma + m(x)$$
 for every $x \in A$,

then we can find a linear functional ψ on R such that

$$\psi(x) = \varphi(x)$$
 for every $x \in A$,

$$\psi(x) \leq \gamma + m(x)$$
 for every $x \in R$.

As an application of this extension theorem, we will prove here Ascoli's theorem $\lceil 1, 2 \rceil$: every closed convex set in a Banach space also is weakly closed. Using the terminologies in the book [4], we state this theorem in more general form:

Theorem. Let R be a convex linear topological space, and A a closed convex set. For any $a \in A$, we can find a continuous linear functional φ on R such that

$$\varphi(a) > \sup_{x \in A} \varphi(x).$$

Proof. We can suppose $0 \in A$ without loss of generality. Since A is closed, for any $a \in A$ we can find a convex pseudo-norm for ichwh

$$\inf_{x\in A}||x-a||>0.$$

For such a convex pseudo-norm, putting

$$m(x) = \inf_{y \in A} ||x - y||,$$

 $m(x)\!=\!\inf_{y\in A}||\,x-y\,||,$ we see easily that $0\!\leq\! m(x)\!<\!+\infty;\ m(x)\!=\!0$ for $x\in A$, and

$$m(\lambda x + \mu y) \leq \lambda m(x) + \mu m(y)$$

for $\lambda + \mu = 1$; λ , $\mu \ge 0$, because A is convex. Furthermore, putting

$$\varphi_0(\xi a) = \xi m(a),$$

$$\gamma = \sup_{0 \le \xi \le 1} \{\xi m(a) - m(\xi a)\},\,$$

we obtain a linear functional φ_0 on the linear manifold

$$\{\xi a; -\infty < \xi < +\infty\},$$