4. A Note on the Integration by the Method of Ranked Spaces

By Teruo Ikegami

(Comm. by K. KUNUGI, M.J.A., Jan. 13, 1958)

§ 1. Prof. K. Kunugi showed in his note "Application de la méthode des espaces rangés à la théorie de l'intégration. I"¹⁾ that a new integration can be constructed by the method of ranked spaces,²⁾ and suggested that the development of his theory could be generalized for functions on abstract spaces — for example, locally compact topological groups. In this note, we shall consider the locally compact group G and we shall show that the construction of integrals can be done without changing any detail of the preceding note.

Let G be a locally compact group, m be a Haar measure in $G^{(3)}$ that is, a Borel measure in G, such that m(U) > 0 for every non empty Borel open set U, and m(xE) = m(E) for every Borel set E, and for every element x of G.

First we shall remark that, in a locally compact group there is a fundamental system of neighbourhoods of unit element e, which consists of neighbourhoods whose boundaries are of measure zero.

Let V be a compact neighbourhood of unit element e whose boundary is of measure zero, and from now on our considerations are restricted to the fixed V.

Let the family \mathcal{O} be a totality of open sets in V whose boundaries are of measure zero. Then,

(1) If $O_1 \in \mathcal{O}$, $O_2 \in \mathcal{O}$ then $O_1 \subseteq O_2 \in \mathcal{O}$, $O_1 \subseteq O_2 \in \mathcal{O}$.

(2) If $O_1 \in \mathcal{O}$, $O_2 \in \mathcal{O}$ then $O_1 \frown (V - \overline{O}_2) \in \mathcal{O}$.

The vector space over the field of real numbers generated by characteristic functions of sets in \mathcal{O} is denoted by φ . To $f \in \varphi$ correspond a finite number of disjoint sets $O_i \in \mathcal{O}$ $(i=1, 2, \dots, n)$ and

$$f(x) = \sum_{i=1}^{n} \alpha_i \chi_{0_i}(x)$$

where χ_{0_i} is a characteristic function of O_i , and α_i is a real number. Two functions of Φ , f(x), g(x) are identified when they are different only on the boundary of $O \in \mathcal{O}$. Obviously if $f \in \Phi$, $g \in \Phi$ then $f + g \in \Phi$,

¹⁾ K. Kunugi: Application de la méthode des espaces rangés à la théorie de l'intégration. I, Proc. Japan Acad., **32**, 215-220 (1956).

²⁾ K. Kunugi: Sur les espaces complets et régulièrement complets. I, II, Proc. Japan Acad., **30**, 553-556, 912-916 (1954).

³⁾ On Haar measure, see for example P. R. Halmos; Measure Theory, New York (1950).