1. On Zeta-Functions and L-Series of Algebraic Varieties

By Makoto Ishida
Mathematical Institute, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 13, 1958)

In this paper, we shall prove Weil's conjecture on zeta-functions for algebraic varieties, defined over finite fields, having abelian varieties as abelian (not necessarily unramified) coverings and also Lang's analogous conjecture on L-series for those coverings. Then we shall see some interesting relation between the zeta-functions of such algebraic varieties and those of their Albanese varieties. Moreover those results will enable us to prove Hasse's conjecture on zeta-functions for some algebraic varieties defined over algebraic number fields. In the following we shall use the definitions, notations and results of Weil's book [6] often without references.

Here I wish to express my hearty gratitude to Prof. Z. Suetuna for his encouragement and also to Mr. Y. Taniyama for his kind suggestions.

1. Let V be a normal projective variety of dimension r, defined over a finite field k with q elements; let A be an abelian variety such that $f: A \rightarrow V$ is a Galois (not necessarily unramified) covering, also defined over k, with group G and of degree n (cf. Lang [2]). The map $a \rightarrow a^{q}$ for all points a on A determines an endomorphism of A, which is denoted by $\pi=\pi_{A}$. Let x be a generic point of A over k. Then, for σ in G, the map $x \rightarrow x^{\sigma}$ induces a birational transformation of A defined over k; hence we can write $x^{\sigma}=\eta_{\sigma}(x)+a_{\sigma}$ where η_{σ} is an automorphism of A defined over k and a_{σ} is a rational point on A over k.

Now we consider an endomorphism $\pi^{m}-\eta_{\sigma}$ of A for a positive rational integer m and for σ in G. As $k\left(\eta_{\sigma}(x)\right)=k(x)$, we have $k\left(x^{q m}\right.$, $\left.\left(\pi^{m}-\eta_{\sigma}\right)(x)\right)=k(x)$ and so $\nu_{i}\left(\pi^{m}-\eta_{\sigma}\right)=1$. Hence the order of the kernel of this endomorphism is equal to $\operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)$, with a rational prime l different from the characteristic of k, which is denoted by $\nu(m, \sigma)$. As det $M_{l}\left(\eta_{\sigma}\right)=1$ and the matrix $M_{l}\left(\pi^{m} \eta_{\sigma}^{-1}-1\right)$ is of even degree $2 r$, we have also $\nu(m, \sigma)=\operatorname{det} M_{l}\left(1-\pi^{m} \eta_{\sigma}^{-1}\right)$.

Then the L-series $L(u, \chi, A / V)$ of the covering A / V belonging to an irreducible character χ of G is given by the following logarithmic derivative:

$$
d / d u \cdot \log L(u, \chi, A / V)=\sum_{m=1}^{\infty}\left\{1 / n \cdot \sum_{\sigma \in G} \chi(\sigma) \nu(m, \sigma)\right\} u^{m-1}
$$

Theorem 1. Let $Z(u, V)$ and $Z(u, A)$ be the zeta-functions of V and A over k. Then we have the equality $Z(u, V)=Z(u, A)$ if and

