82. On a Theorem of W. Sierpiński and S. Ruziewicz

By Kiyoshi Iséki

(Comm. by K. KUNUGI, M.J.A., June 12, 1958)

In my Note [1], we have generalized a theorem of W. Sierpiński [3]. In this Note we shall prove a theorem of S. Ruziewicz [2] and consider the relation of my result and his theorem. My result [1] is stated as follows: Let M be an ordered set with power m. For a power $n, n \ge m$, if and only if the following proposition is true: for every element a of M, we can assign a family $\mathcal{F}(a)$ of intervals such that each interval of it has a as end point and $\overline{\mathcal{F}(a)} < n$, and one of any distinct element of M is an end point of an interval of some $\mathcal{F}(a)$.

For an ordered set M with power m, let us consider the product space $M \times M$, then $A = \{(x, y) \mid y \in \mathcal{F}(x)\} \cup \{(x, x) \mid x \in M\}$ and $B = \{(x, y) \mid x \in \mathcal{F}(y)\}$ are disjoint. Further $A \cup B = M \times M$, therefore the set A, Bgives a partition of $M \times M$. Hence the section $A(x_0)$ of A by a given x_0 has the power < n. On the other hand, the section $B(y_0)$ of B by any y has the power < n. Thus we have the following

Proposition. Let M be an ordered set with power m. If $m \le n$, then the product space $M \times M$ is decomposed into two sets A and B such that A meets with power < n on every parallel line to the second coordinate axis and B meets with power < n on every parallel line to the first coordinate axis.

We shall prove the converse of the proposition. To prove that $m \le n$, suppose that the set A, B is a partition of $M \times M$, and A, B satisfy the condition mentioned. Then we define $\mathcal{P}(a)$ as the set $\{y \mid (a, y) \in A, a \ne y\} \bigcup \{x \mid (x, a) \in B, x \ne a\}$. Therefore we have $\overline{\mathcal{P}(a)} < n$, and for each a of M, we may define $\mathcal{P}(a)$. If x and y are distinct elements of M, then, by $(x, y) \in M$, $(x, y) \in A$ or $(x, y) \in B$. If $(x, y) \in A$, then $x \in \mathcal{P}(y)$, and if $(x,y) \in B$, then $y \in \mathcal{P}(x)$. Let us define $\mathcal{F}(a)$ as all intervals (a, x) such that $x \in \mathcal{P}(a)$. It is obvious that $\overline{\mathcal{F}(a)} < n$, and one of distinct elements is an end point of an interval of type $\mathcal{F}(a)$.

Therefore we have the following

Theorem. Let M be an ordered set with power m. A power n is not less than m, if and only if the following statement: the product space $M \times M$ is decomposed into two disjoint sets such that one meets with the power < n on each parallel line to the first coordinate axis and the other meets with power < n on each parallel line to the second coordinate axis.

Such a theorem was stated by S. Ruziewicz [2] and a special