82. On a Theorem of W. Sierpiński and S. Ruziewicz

By Kiyoshi Iséki

(Comm. by K. Kunugi, m.J.A., June 12, 1958)
In my Note [1], we have generalized a theorem of W. Sierpiński [3]. In this Note we shall prove a theorem of S. Ruziewicz [2] and consider the relation of my result and his theorem. My result [1] is stated as follows: Let M be an ordered set with power m. For a power $n, n \geq m$, if and only if the following proposition is true: for every element a of M, we can assign a family $\mathscr{F}(a)$ of intervals such that each interval of it has a as end point and $\overline{\overline{\mathcal{F}}(a)}<n$, and one of any distinct element of M is an end point of an interval of some $\mathscr{F}(\alpha)$.

For an ordered set M with power m, let us consider the product space $M \times M$, then $A=\{(x, y) \mid y \in \mathscr{F}(x)\} \cup\{(x, x) \mid x \in M\}$ and $B=\{(x, y) \mid$ $x \in \mathscr{F}(y)\}$ are disjoint. Further $A \smile B=M \times M$, therefore the set A, B gives a partition of $M \times M$. Hence the section $A\left(x_{0}\right)$ of A by a given x_{0} has the power $<n$. On the other hand, the section $B\left(y_{0}\right)$ of B by any y has the power $<n$. Thus we have the following

Proposition. Let M be an ordered set with power m. If $m \leq n$, then the product space $M \times M$ is decomposed into two sets A and B such that A meets with power $<n$ on every parallel line to the second coordinate axis and B meets with power $<n$ on every parallel line to the first coordinate axis.

We shall prove the converse of the proposition. To prove that $m \leq n$, suppose that the set A, B is a partition of $M \times M$, and A, B satisfy the condition mentioned. Then we define $\Phi(a)$ as the set $\{y \mid(a, y) \in A$, $a \neq y\} \bigcup\{x \mid(x, a) \in B, x \neq a\}$. Therefore we have $\overline{\overline{\Phi(a)}}<n$, and for each a of M, we may define $\Phi(a)$. If x and y are distinct elements of M, then, by $(x, y) \in M,(x, y) \in A$ or $(x, y) \in B$. If $(x, y) \in A$, then $x \in \Phi(y)$, and if $(x, y) \in B$, then $y \in \Phi(x)$. Let us define $\mathscr{F}(a)$ as all intervals (a, x) such that $x \in \Phi(a)$. It is obvious that $\overline{\overline{\mathcal{F}}(a)}<n$, and one of distinct elements is an end point of an interval of type $\mathscr{F}(a)$.

Therefore we have the following
Theorem. Let M be an ordered set with power m. A power n is not less than m, if and only if the following statement: the product space $M \times M$ is decomposed into two disjoint sets such that one meets with the power $<n$ on each parallel line to the first coordinate axis and the other meets with power $<n$ on each parallel line to the second coordinate axis.

Such a theorem was stated by S. Ruziewicz [2] and a special

