116. Finite-to-one Closed Mappings and Dimension. $I^{1)}$

By Keiô Nagami
Department of Mathematics, Ehime University
(Comm. by K. Kunugi, m.J.A., Oct. 13, 1958)

The fundamental theorem of this note is as follows.
Theorem 1. Let R and S be metric spaces and f a closed mapping (continuous transformation) of R onto S. If $f^{-1}(y)$ consists of exactly $k(<\infty)$ points for every point $y \in S$ and $\operatorname{dim} R \leq 0$, then we have $\operatorname{dim} S \leq 0{ }^{2}{ }^{2}$

As direct consequences of this theorem we get a large number of theorems of dimension theory for non-separable metric spaces, among which there is Morita-Katětov's fundamental theorem of dimension theory. This fact indicates the possibility of the development of dimension theory, other than Morita and Katětov's, for non-separable metric spaces based on Theorem 1. An analogue to Theorem 1 for the case when f is open will also be stated.

Lemma 1. R is a metric space with $\operatorname{dim} R \leq 0$, if and only if R is a dense subset of an inverse limiting space of a sequence of discrete spaces.

This is a trivial modification of Morita [2, Theorem 10.2] or of Katětov [1, Theorem 3.6]; its proof is included in that of Theorem 4 below.

Proof of Theorem 1. By Lemma 1 we can assume that R is a dense subset of $\lim R_{i}$ obtained from $\left\{R_{i}, f_{j k}: R_{j} \rightarrow R_{k}(j>k)\right\}$ with discrete spaces $R_{i}=\left\{p_{i \alpha} ; \alpha \in A_{i}\right\}$. We can assume that points of R_{i} are linearly-ordered such that for any $p_{i \alpha}, p_{i \beta}$ with $f_{i j}\left(p_{i \alpha}\right) \neq f_{i j}\left(p_{i \beta}\right), i>j$, it holds that $p_{i \alpha}>p_{i \beta}$ if and only if $f_{i j}\left(p_{i \alpha}\right)>f_{i j}\left(p_{i \beta}\right)$. We introduce into points $\left(p_{1 \alpha_{1}}, p_{2 \alpha_{2}}, \cdots\right)$ of $\lim R_{i}$ the lexicographic order with respect to the one of R_{i} just defined. Let $x_{1}(y), \cdots, x_{k}(y) \in R$ be the inverse image of $y \in S$ with $x_{1}(y)<\cdots<x_{k}(y)$ and then R is decomposed into mutually disjoint subsets $T_{i}=\left\{x_{i}(y) ; y \in S\right\}, i=1, \cdots, k$.

We shall show that every T_{i} is an F_{σ}. To do so it suffices to prove T_{1} is an F_{σ} since the rest case is proved similarly. Let $r(y)$, $y \in S$, be the smallest integer such that $\pi_{r}\left(x_{1}(y)\right), \cdots, \pi_{r}\left(x_{k}(y)\right)$ are mutually different points of R_{r}, where $\pi_{r}: \lim R_{i} \rightarrow R_{r}$ is the natural projection. Let $S_{t}=\{y ; y \in S, r(y) \leq t\}, t=1,2, \cdots$, and $T_{j t}=T_{j} \cap f^{-1}\left(S_{t}\right)$ and then evidently i) $S=\bigcup_{t=1}^{\infty} S_{t}$, ii) $T_{1}=\bigcup_{t=1}^{\infty} T_{1 t}$, iii) $T_{1 t} \subset T_{1, t+1}$. The

[^0]
[^0]: 1) The detail of the content of the present note will be published in another place.
 2) $\operatorname{dim}=$ covering dimension.
