## 116. Finite-to-one Closed Mappings and Dimension. I<sup>1)</sup>

By Keiô NAGAMI

Department of Mathematics, Ehime University (Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

The fundamental theorem of this note is as follows.

**Theorem 1.** Let R and S be metric spaces and f a closed mapping (continuous transformation) of R onto S. If  $f^{-1}(y)$  consists of exactly  $k(<\infty)$  points for every point  $y \in S$  and dim  $R \leq 0$ , then we have dim  $S \leq 0$ .<sup>2)</sup>

As direct consequences of this theorem we get a large number of theorems of dimension theory for non-separable metric spaces, among which there is Morita-Katětov's fundamental theorem of dimension theory. This fact indicates the possibility of the development of dimension theory, other than Morita and Katětov's, for non-separable metric spaces based on Theorem 1. An analogue to Theorem 1 for the case when f is open will also be stated.

**Lemma 1.** R is a metric space with dim  $R \le 0$ , if and only if R is a dense subset of an inverse limiting space of a sequence of discrete spaces.

This is a trivial modification of Morita [2, Theorem 10.2] or of Katětov [1, Theorem 3.6]; its proof is included in that of Theorem 4 below.

Proof of Theorem 1. By Lemma 1 we can assume that R is a dense subset of  $\lim R_i$  obtained from  $\{R_i, f_{jk}: R_j \to R_k \ (j > k)\}$  with discrete spaces  $R_i = \{p_{i\alpha}; \alpha \in A_i\}$ . We can assume that points of  $R_i$  are linearly-ordered such that for any  $p_{i\alpha}, p_{i\beta}$  with  $f_{ij}(p_{i\alpha}) \neq f_{ij}(p_{i\beta}), i > j$ , it holds that  $p_{i\alpha} > p_{i\beta}$  if and only if  $f_{ij}(p_{i\alpha}) > f_{ij}(p_{i\beta})$ . We introduce into points  $(p_{1\alpha_1}, p_{2\alpha_2}, \cdots)$  of  $\lim R_i$  the lexicographic order with respect to the one of  $R_i$  just defined. Let  $x_1(y), \cdots, x_k(y) \in R$  be the inverse image of  $y \in S$  with  $x_1(y) < \cdots < x_k(y)$  and then R is decomposed into mutually disjoint subsets  $T_i = \{x_i(y); y \in S\}, i = 1, \cdots, k$ .

We shall show that every  $T_i$  is an  $F_{\sigma}$ . To do so it suffices to prove  $T_1$  is an  $F_{\sigma}$  since the rest case is proved similarly. Let r(y),  $y \in S$ , be the smallest integer such that  $\pi_r(x_1(y)), \dots, \pi_r(x_k(y))$  are mutually different points of  $R_r$ , where  $\pi_r: \lim R_i \to R_r$  is the natural projection. Let  $S_t = \{y; y \in S, r(y) \le t\}, t = 1, 2, \dots$ , and  $T_{jt} = T_j \cap f^{-1}(S_t)$ and then evidently i)  $S = \bigcup_{t=1}^{\infty} S_t$ , ii)  $T_1 = \bigcup_{t=1}^{\infty} T_{1t}$ , iii)  $T_{1t} \subset T_{1,t+1}$ . The

<sup>1)</sup> The detail of the content of the present note will be published in another place.

<sup>2)</sup> dim=covering dimension.