110. On Determination of the Class of Saturation in the Theory of Approximation of Functions

By Gen-ichiro SUNOUCHI and Chinami WATARI (Comm. by K. KUNUGI, M.J.A., Oct. 13, 1958)

1. Introduction. Let f(x) be an integrable function, with period 2π and let its Fourier series be

(1)
$$\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx) \equiv \sum_{k=0}^{\infty} A_k(x).$$

Let $g_k(n)$ $k=1, 2, \cdots$ be the summating function and consider a family of transforms of (1) of a summability method G,

(2)
$$P_n(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} g_k(n)(a_k \cos kx + b_k \sin kx)$$

where the parameter n needs not be discrete.

If there are a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

(I) $||f(x) - P_n(x)|| = o(\varphi(n))^{1}$ implies f(x) = constant;

(II) $||f(x) - P_n(x)|| = O(\varphi(n))$ implies $f(x) \in K$;

(III) for every $f(x) \in K$, one has $||f(x) - P_n(x)|| = O(\varphi(n))$,

then it is said that the method of summation G is saturated with order $\varphi(n)$ and its class of saturation is K. This definition is due to J. Favard [2].

The purpose of this article is to determine the order and the class of saturation for several familiar summation methods. M. Zamansky [5] has solved this problem for the method of Cesàro-Fejér, with respect to the space (C) of continuous functions; P. L. Butzer [1] studied the cases of methods of Abel-Poisson and Gauss-Weierstrass, employing the theory of semi-groups, but, as he made use of the regularity of the spaces (L^p) p>1, he left the question open for the spaces (C) and (L).

We give here a direct method to determine the class of saturation for general method of summability, with respect to the spaces (C) and (L^p) $p \ge 1$. The above condition (I) is easily verified and the condition (III) is proved by so-called singular integral method. The inverse problem (II) is the key point of this paper.

2. The inverse problem. Let us write $\Delta_n(x) = f(x) - P_n(x)$ and suppose that there are positive constants c, r and ρ such that (3) $\lim_{n \to \infty} n^r (1 - g_k(n)) = ck^{\rho(2)}$ $(k=1, 2, \cdots).$

¹⁾ The norm means (C)- or (L^p) - $(p \ge 1)$ norm.

²⁾ To fix the ideas, we take the limit as $n \rightarrow \infty$; but, as is easily seen, the following arguments remain valid, with appropriate modifications, in other cases (see Theorem 2 below).