110. On Determination of the Class of Saturation in the Theory of Approximation of Functions

By Gen-ichiro Sunouchi and Chinami Watari

(Comm. by K. Kunugi, m.J.A., Oct. 13, 1958)

1. Introduction. Let $f(x)$ be an integrable function, with period 2π and let its Fourier series be

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right) \equiv \sum_{k=0}^{\infty} A_{k}(x) . \tag{1}
\end{equation*}
$$

Let $g_{k}(n) k=1,2, \cdots$ be the summating function and consider a family of transforms of (1) of a summability method G,

$$
\begin{equation*}
P_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} g_{k}(n)\left(a_{k} \cos k x+b_{k} \sin k x\right) \tag{2}
\end{equation*}
$$

where the parameter n needs not be discrete.
If there are a positive non-increasing function $\varphi(n)$ and a class K of functions in such a way that

$$
\begin{equation*}
\left\|f(x)-P_{n}(x)\right\|=o(\varphi(n))^{1)} \quad \text { implies } \quad f(x)=\text { constant } \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\left\|f(x)-P_{n}(x)\right\|=O(\varphi(n)) \quad \text { implies } \quad f(x) \in K \tag{II}
\end{equation*}
$$

(III) for every $f(x) \in K$, one has $\left\|f(x)-P_{n}(x)\right\|=O(\varphi(n))$, then it is said that the method of summation G is saturated with order $\varphi(n)$ and its class of saturation is K. This definition is due to J. Favard [2].

The purpose of this article is to determine the order and the class of saturation for several familiar summation methods. M. Zamansky [5] has solved this problem for the method of CesàroFejér, with respect to the space (C) of continuous functions; P. L. Butzer [1] studied the cases of methods of Abel-Poisson and GaussWeierstrass, employing the theory of semi-groups, but, as he made use of the regularity of the spaces (L^{p}) $p>1$, he left the question open for the spaces (C) and (L).

We give here a direct method to determine the class of saturation for general method of summability, with respect to the spaces (C) and (L^{p}) $p \geqq 1$. The above condition (I) is easily verified and the condition (III) is proved by so-called singular integral method. The inverse problem (II) is the key point of this paper.
2. The inverse problem. Let us write $\Delta_{n}(x)=f(x)-P_{n}(x)$ and suppose that there are positive constants c, r and ρ such that

$$
\begin{equation*}
\left.\lim _{n \rightarrow \infty} n^{r}\left(1-g_{k}(n)\right)=c k^{\rho}\right)^{2} \quad(k=1,2, \cdots) \tag{3}
\end{equation*}
$$

1) The norm means (C)- or (L^{p})-($p \geqq 1$) norm.
2) To fix the ideas, we take the limit as $n \rightarrow \infty$; but, as is easily seen, the following arguments remain valid, with appropriate modifications, in other cases (see Theorem 2 below).
