4. On a Theorem on Modular Lattices

By Yuzo Utumi
Osaka Women's University
(Comm. by K. Shoda, M.J.A., Jan. 12, 1959)

1. It is well known that an irreducible, complete, (upper and lower) continuous, complemented modular lattice L is finite-dimensional if and only if the following condition is satisfied ${ }^{1{ }^{1}}$

Condition $4 . L$ contains no infinite sequence (a_{i}) of nonzero elements $a_{i}, i=1,2, \cdots$, such that for every $i>1$ there exists an element b_{i} satisfying $a_{i-1} \geq a_{i} \dot{\cup} b_{i}{ }^{2}$ and $a_{i} \approx b_{i}$.

The purpose of the present paper is to prove the following theorem. By $m(L)$ we denote the least upper bound of all integers r such that L contains an independent system of mutually projective nonzero r elements.

Theorem. For any complete upper continuous modular lattice L the condition Δ is equivalent to each of the following two conditions:

Condition M. $m(L)$ is finite.
Condition F. There is no independent countable subset $\left(a_{i}\right)$ such that $a_{i} \succsim a_{i+1} \neq 0$ for every $i .^{3)}$

As a consequence of this we shall obtain
Corollary 1. Let \Re be a semisimple ring with unit element and assume that \Re-left (-right) module \Re is injective. Then \Re is a regular ring (in the sense of v. Neumann), and the following three conditions are equivalent:
(i) $\mathfrak{\Re}$ is of bounded index.
(ii) \Re / \mathcal{F} is a simple ring with minimum condition for every primitive ideal \mathfrak{P}.
(iii) \mathfrak{R} is P-soluble. ${ }^{4)}$

In this case, \mathfrak{R}-right (-left) module \Re is also injective.
2. Henceforth L always will denote a modular lattice with zero.

Lemma 1. Let $a \bigcap b=a \bigcap c=0$ and $a \cup b \geq c$. Then $(a \cup c) \bigcap b \sim_{a} c .{ }^{5)}$
Lemma 2. If $0 \neq a \leq b=b_{1} \dot{U} b_{2} \dot{\cup} \cdots \dot{U} b_{n}$, then there exist nonzero a^{\prime}, b^{\prime} such that $a \geq a^{\prime} \sim b^{\prime} \leq b_{i}$ for some i.

In fact, if $a \bigcap\left(b_{2} \cup \cdots \cup b_{n}\right)=0$, then $b_{1} \cap\left(a \cup b_{2} \cup \cdots \cup b_{n}\right) \sim a$ by Lemma 1; hence Lemma 2 follows by induction.

1) See [7].
2) \dot{U} denotes the join of independent elements.
3) By $a \succsim b$ we mean the existence of c such that $a \geq c \approx b$.
4) See [5].
5) $b \sim_{a} c$ is meant that $a \dot{\cup} b=a \cup \cup($.
