3. Note on Finite Simple c-Indecomposable Semigroups

By Takayuki Tamura
Gakugei Faculty, Tokushima University, Japan
(Comm. by K. Shoda, m.J.A., Jan. 12, 1959)

In this note we shall report the result of study of finite simple c-indecomposable semigroups except groups without proof, which we shall discuss precisely in another paper. A semigroup is said to be c-indecomposable if it has no commutative homomorphic image except one-element semigroup.

1. Finite simple semigroups. A simple semigroup is defined as a semigroup which has no proper ideal. ${ }^{11}$

Referring Theorem 8 in [1], ${ }^{2)}$ we have
Lemma 1. A finite simple semigroup without zero belongs to one of the following three categories.
(1) Finite simple c-indecomposable semigroups without zero except groups.
(2) Finite groups.
(3) Finite simple non-commutative non-unipotent semigroups whose greatest c-homomorphic images are non-trivial groups.

Lemma 2. A finite simple semigroup with zero belongs to one of the following three categories.
(1) Finite simple c-indecomposable semigroups with zero.
(2) A z-semigroup of order 2.
(3) $S=\{0\} \cup S^{\prime}$ where 0 is a zero of S, and $S^{\prime \prime}$ is a finite simple semigroup without zero. We permit S^{\prime} to be a one-element semigroup.

As a special case, we get
Lemma 3. S is a finite commutative simple semigroup without zero if and only if S is a finite commutative group. S is a finite commutative simple semigroup with zero if and only if S is either a z-semigroup of order 2 or a finite commutative group with zero adjoined.
2. Finite simple c-indecomposable semigroups with zero. According to Rees [3], a finite simple semigroup S is completely simple, and hence it is faithfully represented as a regular matrix semigroup over a group. The defining matrix $P=\left(p_{\mu \lambda}\right)$ of S is said to contain a zero if there is an element $p_{\beta \alpha}=0$ at least.

Without the condition of finiteness, we have

[^0]
[^0]: 1) By a proper ideal T of a semigroup S we mean a proper subset T of S such that $T \neq\{0\}, S T \subseteq T \neq S$, and $T S \subseteq T \neq S$.
 2) Numbers in brackets [] refer to the references at the end of the paper.
